Supercharge Your Innovation With Domain-Expert AI Agents!

Phase interpolation circuit

a phase interpolation circuit and phase interpolation technology, applied in pulse manipulation, pulse technique, instruments, etc., can solve the problems of limited operating range and availability of low-voltage operations

Inactive Publication Date: 2013-03-21
SUNPLUS TECH CO LTD
View PDF10 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The solution stabilizes the duty cycle of differential output signals, mitigates variations caused by process changes, and expands the operating range of the phase interpolation circuit, enhancing its performance in high-speed transmission environments.

Problems solved by technology

Therefore, it is an important issue to ameliorate the phase interpolation circuit to improve whole performance of the clock and data recovery circuit.
However, the phase interpolation circuit of the current mode logic has following disadvantages: (1) a linearity thereof is liable to be influenced by a parasitic capacitance and a front-end circuit load, so that a duty cycle of an output signal has a great variation, especially under an influence of process variation; (2) it is of no avail for low-voltage operations, which leads to a limited operating range.
Therefore, how to adjust the duty cycle of the output signal or implement the low-voltage operations is an important issue to be developed in design of the phase interpolation circuit.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Phase interpolation circuit
  • Phase interpolation circuit
  • Phase interpolation circuit

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0019]FIG. 1 is a block schematic diagram of a phase interpolation circuit according to an embodiment of the invention. Referring to FIG. 1, the phase interpolation circuit 100 includes a multiplexer 110, a multiplexer 120, an interpolator 130 and a duty-cycle repeater 140. The phase interpolation circuit 100 can be used in a clock and data recovery circuit, especially in a clock and data recovery circuit of a high-speed transmission interface module (for example, a universal serial bus (USB) 3.0 interface module).

[0020]Referring to FIG. 1, the multiplexer 110 and the multiplexer 120 respectively receive a plurality of phase signals. For example, in an exemplary embodiment, by equally dividing 360 degrees into 8 parts, 8 phase signals P0-P7, i.e. 0°, 45°, 90°, 135°, . . . , 315° are obtained. The 8 phase signals P0-P7 respectively have a phase difference of 45°. Moreover, the phase signals P0, P2, P4 and P6 are respectively an even multiple of the basic phase of 45°, so that the pha...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A phase interpolation circuit including a first multiplexer, a second multiplexer, an interpolator and a duty-cycle repeater is provided. The first multiplexer receives a plurality of even order signals. The second multiplexer receives a plurality of odd order signals. The interpolator receives a first reference signal composed of one of the even order signals through the first multiplexer, and receives a second reference signal composed of one of the odd order signals through the second multiplexer. The interpolator divides a phase difference between the first reference signal and the second reference signal into a plurality of sub-phases according to a digital control signal, and selects one of the sub-phases to generate a differential input signal. The duty-cycle repeater adjusts the duty cycle of the differential input signal and accordingly generates a differential output signal with 50% duty cycle.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application claims the priority benefit of Taiwan application serial no. 100133747, filed on Sep. 20, 2011. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The invention relates to a phase interpolation circuit. Particularly, the invention relates to a phase interpolation circuit capable of generating a differential output signal with 50% of duty cycle.[0004]2. Description of Related Art[0005]In a high-speed transmission interface module (for example, a universal serial bus (USB) 3.0 interface module), a clock and data recovery circuit is generally configured to recover signals containing noise components, where a phase interpolation circuit is a core circuit composing the clock and data recovery circuit. Therefore, it is an important issue to ameliorate the phase interpolation circuit...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): H03K3/017
CPCH03K5/131H03K2005/00052H03K5/1565
Inventor HUANG, CHEN-WEI
Owner SUNPLUS TECH CO LTD
Features
  • R&D
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More