Method and apparatus for improving the quality of kinematic mr images
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
third embodiment
[0042] In a third embodiment for implementation of the invention, the phase encoding gradient is alternated between the first and the second position-encoding amplitude during the first swing of the joint. The desired TODs are determined as above for the desired joint angles. Then the data are search for the two lines of data acquired nearest in time to the desired TOD. Because the phase encoding gradient is alternating between step #1 and step #2, these two lines will necessarily have different gradient amplitudes. During the next cycle of joint movement, the phase encoding gradient is alternated between the third and the fourth encoding amplitudes. This implementation of the invention reduces by 50% the number of joint flexions required to obtain images, while losing some time resolution.
fourth embodiment
[0043] In a fourth embodiment for implementation of the invention, the phase-encoding gradient is stepped among three values, #1, #2, and #3, during the first swing of the joint. That is, the repeated group of sequence elements contains three Imaging Modules. The desired TODs are determined as above for the desired joint angles. Then the data are searched (retrospectively sorted) for selecting the three lines of data acquired closest in time to the desired TOD. Because the phase-encoding gradient has the amplitude pattern #1, #2, #3, #1, #2, #3, these three lines will necessarily have three different phase-encoding amplitudes. During the next cycle of joint movement, the phase encoding gradient is stepped among the between the fourth, fifth, and sixth encoding amplitudes. Compared to the first proposed method, this reduces the number of joint flexions required to obtain images by a factor of three. It is clear that this method can be extended to gradient patterns of any length, to f...
fifth embodiment
[0044] In a fifth embodiment for implementation of the invention, the sequence is run multiple times with all of the phase encoding steps during a single flexion of the joint. This gives a “real-time” image without the need to select data using the TOD. These images may exhibit blur because of joint motion during the extended period of time needed to acquire all of the phase encoding lines. In addition, the sequence parameters needed to acquire images so rapidly may lead to poor SNR. In the proposed method, similar additional data are acquired during additional joint flexions. Two enhanced reconstruction methods are then possible. In the first method, the effective TOD (k=0 Fourier line) of each full image MR data set is determined, and these TODs are compared to the goniometer TODs to estimate, by interpolation, the joint angle. Then images from different flexion cycles but nearly the same estimated joint angle can be averaged to improve SNR. A second, and superior method of enhanc...
PUM
Login to View More Abstract
Description
Claims
Application Information
Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com



