Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2085 results about "Time resolution" patented technology

Progressive image transmission using discrete wavelet transforms

Disclosed herein is a method of storing and of progressively transferring a still image so that it can be conveniently previewed during the transfer and so that a user can terminate the transfer at an early stage if the image turns out to be undesirable. The methods of the invention include transforming the image into a plurality of decomposition levels using a discrete wavelet transform. Each decomposition level comprises a plurality of subimages which allow reconstruction of an image representation of the still image. The decomposition levels are transmitted beginning with a base decomposition level providing a low level of image resolution and then proceeding with decomposition levels providing increasingly higher levels of image resolution. Within each decomposition level, rows of the various subimages are arranged or interlaced together in contiguous blocks, so that all data for a single row, at a single decomposition level, is transmitted together. At the receiving end of the transfer, the row blocks are reconstructed and displayed as they are received. The invention enables the initial display of a low resolution image which is gradually updated and sharpened, on a row-by-row basis, until a desired high resolution is achieved. The user may terminate the transfer at any point.
Owner:MICROSOFT TECH LICENSING LLC

High-resolution three-dimensional digital rock core modeling method

The invention discloses a high-resolution digital rock core modeling method. The high-resolution digital rock core modeling method comprises the following steps: firstly, scanning a rock core by X-ray CT (computed tomography); then acquiring the rock throat radius distribution from rock core mercury data, acquiring the rock core porosity radius distribution from rock core nuclear magnetism data, intercepting the part the pore throat radius of which is less than the CT scanning resolution as an input parameter of a random network method, wherein the selected intercepted value is relevant to the CT scanning resolution; comparing the digital rock core porosity obtained by CT scanning with the experiment measurement porosity, calculating the size of the lost porosity of the digital rock core by CT scanning, and constructing a porosity network model by utilizing the intercepted pore throat radius distribution by adopting the random network method, wherein the porosity of the generated network model is consistent with the porosity lost in CT scanning; and converting the porosity network model into the micro porosity digital rock core by applying gridding method, and overlapping the digital rock core constructed by a mercury injection nuclear magnetism method to the digital rock core scanned by CT by adopting a multi-scale integration method. The method breaks through the restriction of CT scanning resolution.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA) +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products