Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7914 results about "Blood pressure" patented technology

Blood pressure (BP) is the pressure of circulating blood on the walls of blood vessels. Most of this pressure is due to work done by the heart by pumping blood through the circulatory system. Used without further specification, "blood pressure" usually refers to the pressure in large arteries of the systemic circulation. Blood pressure is usually expressed in terms of the systolic pressure (maximum during one heartbeat) over diastolic pressure (minimum in between two heartbeats) and is measured in millimeters of mercury (mmHg), above the surrounding atmospheric pressure.

Portable remote patient telemonitoring system

A system and method for monitoring vital signs and capturing data from a patient remotely using radiotelemetry techniques. The system is characterized by a cordless, disposable sensor band with sensors form measuring full waveform ECG, full waveform respiration, skin temperature, and motion, and transmission circuitry for the detection and transmission of vital signs data of the patient. A small signal transfer unit that can either be worn by the patient, e.g., on his or her belt, or positioned nearby receives data from the sensor band, which it then forwards by e.g., radio transmission to a base station that can be located up to 60 meters away. The base station receives data transmissions from the signal transfer unit and is designed to connect to conventional phone lines for transferring the collected data to a remote monitoring station. The base station may also capture additional clinical data, such as blood pressure data, and to perform data checks. Patient safety is enhanced by the ability of the base station to compare clinical data, e.g., ECG, against given profiles and to mark events when appropriate or when the base station is programmed to do so. Such events are indicated to the physician and could be indicated to the patient by reverse transmission to the signal transfer unit. A remote monitoring station allows the presentation and review of data (including events) forwarded by the sensor band. ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep. The system of the invention has useful application to the collection of patient clinical data during drug trials and medical testing for regulatory approvals as well as management of patients with chronic diseases.
Owner:CLEARPATH PARTNERS

Portable remote patient telemonitoring system using a memory card or smart card

A system and method for monitoring health parameters and capturing data from a subject. The system is characterized by a cordless, disposable sensor band with sensors for measuring full waveform ECG, full waveform respiration, skin temperature, and motion, and a connector which accepts a memory card or a smart card for storage of the measured data. After a predetermined period of time, such as when the sensor band is removed, the memory card or smart card is removed and inserted into a monitoring device which reads the stored health parameter data of the subject. The monitoring device includes a base station that includes a memory / smart card reader and is connected to conventional phone lines for transferring the collected data to a remote monitoring station. The base station may also capture additional clinical data, such as blood pressure data, and to perform data checks. Subject safety is enhanced by the ability of the base station to compare clinical data, e.g. ECG, against given profiles and to mark events when appropriate or when the base station is programmed to do so. The remote monitoring station allows the presentation and review of data (including events) forwarded by the sensor band. ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep. In alternative embodiments, a smart card includes the sensor band's electronics and / or signal transmission circuitry in conjunction with a portable data logger so that the electronics may be reused from one disposable sensor band to the next without limiting the patient's range of movement. The system of the invention has useful application to the collection of subject clinical data during drug trials and medical testing for regulatory approvals as well as management of subjects with chronic diseases.
Owner:CLEARPATH PARTNERS

Signal processing apparatus

A signal processor which acquires a first signal, including a first primary signal portion and a first secondary signal portion, and a second signal, including a second primary signal portion and a second secondary signal portion, wherein the first and second primary signal portions are correlated. The signals may be acquired by propagating energy through a medium and measuring an attenuated signal after transmission or reflection. Alternatively, the signals may be acquired by measuring energy generated by the medium. A processor of the present invention generates a primary or secondary reference signal which is a combination, respectively, of only the primary or secondary signal portions. The secondary reference signal is then used to remove the secondary portion of each of the first and second measured signals via a correlation canceler, such as an adaptive noise canceler, preferably of the joint process estimator type. The primary reference signal is used to remove the primary portion of each of the first and second measured signals via a correlation canceler. The processor of the present invention may be employed in conjunction with a correlation canceler in physiological monitors wherein the known properties of energy attenuation through a medium are used to determine physiological characteristics of the medium. Many physiological conditions, such as the pulse, or blood pressure of a patient or the concentration of a constituent in a medium, can be determined from the primary or secondary portions of the signal after other signal portion is removed.
Owner:JPMORGAN CHASE BANK NA

Telemetry method and apparatus using magnetically-driven MEMS resonant structure

A telemetry method and apparatus using pressure sensing elements remotely located from associated pick-up, and processing units for the sensing and monitoring of pressure within an environment. This includes remote pressure sensing apparatus incorporating a magnetically-driven resonator being hermetically-sealed within an encapsulating shell or diaphragm and associated new method of sensing pressure. The resonant structure of the magnetically-driven resonator is suitable for measuring quantities convertible to changes in mechanical stress or mass. The resonant structure can be integrated into pressure sensors, adsorbed mass sensors, strain sensors, and the like. The apparatus and method provide information by utilizing, or listening for, the residence frequency of the oscillating resonator. The resonant structure listening frequencies of greatest interest are those at the mechanical structure's fundamental or harmonic resonant frequency. The apparatus is operable within a wide range of environments for remote one-time, random, periodic, or continuous/on-going monitoring of a particular fluid environment. Applications include biomedical applications such as measuring intraocular pressure, blood pressure, and intracranial pressure sensing.
Owner:LAUNCHPOINT TECH

Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation

An implantable stimulator and monitor measures a group of heart failure parameters indicative of the state of heart failure employing EGM signals, measures of blood pressure including absolute pressure P, developed pressure (DP=systolic P-diastolic P), and/or dP/dt, and measures of heart chamber volume (V) over one or more cardiac cycles. These parameters include: (1) relaxation or contraction time constant tau (.tau.); (2) mechanical restitution (MR), i.e., the mechanical response of a heart chamber to premature stimuli applied to the heart chamber; (3) recirculation fraction (RF), i.e., the rate of decay of PESP effects over a series of heart cycles; and (4) end systolic elastance (E.sub.ES), i.e., the ratios of end systolic blood pressure P to volume V. These heart failure parameters are determined periodically regardless of patient posture and activity level. The physician can determine whether a particular therapy is appropriate, prescribe the therapy for a period of time while again accumulating the stored patient data for a later review and assessment to determine whether the applied therapy is beneficial or not, thereby enabling periodic changes in therapy, if appropriate. Drug therapies and electrical stimulation therapies, including PESP stimulation, and pacing therapies including single chamber, dual chamber and multi-chamber (bi-atrial and/or bi-ventricular) pacing can be delivered. In patient's prone to malignant tachyarrhythmias, the assessment of heart failure state can be taken into account in setting parameters of detection or classification of tachyarrhythmias and the therapies that are delivered.
Owner:MEDTRONIC INC

Implantable pressure sensor and method of fabrication

A body implantable pressure sensor attached to an endocardial lead for implantation in a heart chamber or cardiac blood vessel for sensing blood pressure and providing blood pressure signals to an implanted or external hemodynamic monitor and/or therapy delivery device and method of fabrication thereof. A pressure sensor module is formed of an elongated receptacle having an elongated receptacle cavity for receiving a calibrated, micro-machined pressure transducer having a pressure responsive element. The receptacle cavity is covered by a diaphragm disposed alongside the lead body and in parallel with the lead axis. The receptacle cavity is filled with a incompressible oil for transferring pressure forces that are applied to the diaphragm to the pressure transducer. The oil is introduced through a fill port, and the fill port is sealed after the oil is introduced to prevent leakage of the oil from the receptacle cavity and to complete the hermetic sealing of the receptacle cavity. The fill port further comprises a fill tube having a fill tube lumen extending outward of an end wall of the receptacle cavity to a fill tube end, and said sealing step further comprises the steps of crimping or otherwise obstructing the fill tube end to close the fill tube lumen, fitting a fill port cover having an abutting edge over the crimped fill tube end and against the end wall of the receptacle to enclose the sealed fill tube end within a fill port cover cavity, and sealing the abutting edge against the receptacle end wall to hermetically enclose the sealed fill tube end within the fill port cover cavity.
Owner:MEDTRONIC INC

Combination sheath and catheter for cardiovascular use

A vascular interventional device may be introduced over a guidewire into a vessel of the cardiovascular system of a patient. This device includes a hollow, flexible tube having a proximal end and a distal end that is adapted to selectively engage a target vessel of the cardiovascular system of the patient. This tube also includes a lumen that is continuous from the proximal to the distal end, and has an end hole in the distal end that is in fluid communication with the lumen. A plurality of side holes are provided near the distal end of the tube, each of which is in continuous fluid communication with the lumen. The device also includes a hollow vessel dilator that is adapted for insertion into and through the tube and over the guidewire. The dilator has an inside diameter that is slightly larger than the guidewire and an outside diameter that is slightly smaller than the diameter of the lumen of the tube. The distal end of the dilator is adapted to accommodate vascular entry over the guidewire, and the dilator is adapted to dilate the vessel to accept the tube. The device also includes a hub at the proximal end of the tube. The hub includes an end port through which a second interventional device having an outside diameter smaller than the diameter of the lumen may be introduced into the lumen of the tube. The hub also includes a side port through which a fluid agent may be injected for delivery through the lumen and out the end hole and side holes of the tube. A sealing mechanism is also provided in the hub to prevent air from entering the tube and blood and other fluids from leaking out of the tube through the hub. A pair of vascular interventional devices, at least one of which is constructed according to the invention, may be utilized to treat or study a cardiovascular condition, or to measure the blood pressure across a vascular segment.
Owner:STRATIENKO ALEXANDER ANDREW

Cardiovascular sheath/catheter

A vascular interventional device may be introduced over a guidewire into a vessel of the cardiovascular system of a patient. This device includes a hollow, flexible tube having a proximal end and a distal end that is adapted to selectively engage a target vessel of the cardiovascular system of the patient. This tube also includes a lumen that is continuous from the proximal to the distal end, and has an end hole in the distal end that is in fluid communication with the lumen. The device also includes a hollow vessel dilator that is adapted for insertion into and through the tube and over the guidewire. The dilator has an inside diameter that is slightly larger than the guidewire and an outside diameter that is slightly smaller than the diameter of the lumen of the tube. The distal end of the dilator is adapted to accommodate vascular entry over the guidewire, and the dilator is adapted to dilate the vessel to accept the tube. The device also includes a hub at the proximal end of the tube. The hub includes an end port through which a second interventional device having an outside diameter smaller than the diameter of the lumen may be introduced into the lumen of the tube. The hub also includes a side port through which a fluid agent may be injected for delivery through the lumen and out the end hole of the tube. A sealing mechanism is also provided in the hub to prevent air from entering the tube and blood and other fluids from leaking out of the tube through the hub. A pair of vascular interventional devices, at least one of which is constructed according to the invention, may be utilized to treat or study a cardiovascular condition, or to measure the blood pressure across a vascular segment.
Owner:STRATIENKO ALEXANDER A

Method for treating a cardiovascular condition

A pair of vascular interventional devices, at least one of which includes a hollow, flexible tube and a dilator that is adapted for insertion into and through the tube and over a guidewire, may be utilized to treat or study a cardiovascular condition, or to measure the blood pressure across a vascular segment. The first device also includes a hub with an end port through which a second device may be introduced into and through the tube. The hub also includes a side port through which a fluid agent may be injected for delivery through the tube or through which pressures can be measured. A guidewire is inserted into a vessel of the cardiovascular system of a patient in the conventional manner. The dilator of the first device is then inserted into the tube and the dilator and tube are then inserted into the vessel over the guidewire and positioned in the target area. The dilator is then withdrawn through the tube from the cardiovascular system of the patient. A second interventional device is selected to treat or study the cardiovascular condition, and the second device is introduced through the end port of the hub of the first device. The second interventional device is advanced over the guidewire to the distal end of the tube of the first device, and the guidewire is then removed. The second interventional device is employed to treat or study the cardiovascular condition. If a pressure transducer is placed on the side port of the first device, as well as on the second device, the second device may be advanced beyond the end of the first device so that the blood pressure may be measured simultaneously at the end of the tube of the first interventional device (the first location) and at the end of the second interventional device (the second location). The difference in blood pressure, if any, between the first and second locations may then be calculated.
Owner:STRATIENKO ALEXANDER A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products