Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6743 results about "Global Positioning System" patented technology

The Global Positioning System (GPS), originally NAVSTAR GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Air Force. It is a global navigation satellite system (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. Obstacles such as mountains and buildings block the relatively weak GPS signals.

Integrated routing/mapping information

An Integrated Routing / Mapping Information System (IRMIS) links desktop personal computer cartographic applications to one or more handheld organizer, personal digital assistant (PDA) or "palmtop" devices. Such devices may be optionally equipped with, or connected to, portable Global Positioning System (GPS) or equivalent position sensing device. Desktop application facilitates user selection of areas, starts, stops, destinations, maps and / or point and / or route information. It optionally includes supplemental online information, preferably for transfer to the PDA or equivalent device. Users' options include route information, area, and route maps. Maps and related route information are configured with differential detail and levels of magnitude. Used in the field, in conjunction with GPS receiver, the PDA device is configured to display directions, text and map formats, the user's current position, heading, speed, elevation, and so forth. Audible signals identifying the next turn along the user's planned route are also provided. The user can pan across maps and zoom between two or more map scales, levels of detail, or magnitudes. The IRMIS also provides for "automatic zooming," e.g., to show greater detail or closer detail as the user approaches a destination, or to larger scale and lower resolution to show the user's overall planned route between points of interest. The IRMIS also enables the user to mark or record specific locations and / or log actual travel routes, using GPS position information. These annotated location marks and / or "breadcrumb" or GPS log data can be saved, uploaded, displayed, or otherwise processed on the user's desktop geographic information or cartographic system. The IRMIS application and data may be distributed online and / or in tangible media in limited and advanced manipulation formats.
Owner:GARMIN

System for localizing and sensing objects and providing alerts

The present invention generally relates to systems, methods and applications utilizing the convergence of any combination of the following three technologies: wireless positioning or localization technology, wireless communications technology and sensor technology. In particular, certain embodiments of the present invention relate to a remote device that includes a sensor for determining or measuring a desired parameter, a receiver for receiving position data from the Global Positioning System (GPS) satellite system, a processor for determining whether or not alert conditions are present and a wireless transceiver for transmitting the measured parameter data and the position data to a central station, such as an application service provider (ASP). The ASP, in turn, may communicate the measured data, position data and notification of any alerts to an end user via an alert device. The present invention also relates to various applications and systems utilizing the capabilities of such a device.
Owner:RATEZE REMOTE MGMT LLC

Integrated routing/mapping information system

An Integrated Routing / Mapping Information System (IRMIS) links desktop personal computer cartographic applications to one or more handheld organizer, personal digital assistant (PDA) or "palmtop" devices. Such devices may be optionally equipped with, or connected to, portable Global Positioning System (GPS) or equivalent position sensing device. Desktop application facilitates user selection of areas, starts, stops, destinations, maps and / or point and / or route information. It optionally includes supplemental online information, preferably for transfer to the PDA or equivalent device. Users' options include route information, area, and route maps. Maps and related route information are configured with differential detail and levels of magnitude. Used in the field, in conjunction with GPS receiver, the PDA device is configured to display directions, text and map formats, the user's current position, heading, speed, elevation, and so forth. Audible signals identifying the next turn along the user's planned route are also provided. The user can pan across maps and zoom between two or more map scales, levels of detail, or magnitudes. The IRMIS also provides for "automatic zooming," e.g., to show greater detail or closer detail as the user approaches a destination, or to larger scale and lower resolution to show the user's overall planned route between points of interest. The IRMIS also enables the user to mark or record specific locations and / or log actual travel routes, using GPS position information. These annotated location marks and / or "breadcrumb" or GPS log data can be saved, uploaded, displayed, or otherwise processed on the user's desktop geographic information or cartographic system. The IRMIS application and data may be distributed online and / or in tangible media in limited and advanced manipulation formats.
Owner:KHOURI ANTHONY

Imaging system for vehicle

An imaging system suitable for use with a vehicle based global positioning system includes an imaging sensor and a control. The imaging sensor is positioned at the vehicle and may face generally forwardly with respect to the direction of travel of the vehicle. The control may be operable to provide a record of vehicle movement since the last position data derived from the vehicle based global positioning system. The imaging system may also or otherwise be suitable for use with a vehicle based magnetic compass system. The imaging system may be operable in combination with a magnetic field sensor of the magnetic compass system to provide a substantially continuously calibrated heading indication, which is substantially resistant to local magnetic anomalies and changes in vehicle inclination. The imaging sensor may be associated with one or more other accessories of the vehicle.
Owner:DONNELLY CORP

Interior rearview mirror system with compass

An interior rearview mirror system includes a compass system and a display. The compass system is operable to display information indicative of a directional heading of the vehicle to a driver of the vehicle. The display comprises a plurality of ports formed in a reflective coating of a mirror reflective element and includes illumination sources positioned behind and generally aligned with corresponding ones of the ports. Each of the illumination sources may be energized to project illumination through a respective one of the ports such that the ports are backlit by the respective illumination sources, in order to convey the directional information to the driver of the vehicle. The system may include a microprocessor operable to control each illumination source via a respective wire connected between the microprocessor and each illumination source. The compass system may utilize a global positioning system for vehicle direction determination.
Owner:DONNELLY CORP

Vehicle navigation system for use with a telematics system

A navigation system for a vehicle includes a vehicle-based telematics system, a vehicle-based global positioning system and a control. The telematics system is operable to receive a user input from a driver of the vehicle and to download directional information from an external service provider to the control in response to the user input and an initial geographic position of the vehicle. The directional information comprises at least two instructions with each of the instructions being coded or associated with or linked to a respective geographic location. The control is operable to provide an output corresponding to each of the instructions in response to a current actual geographic position of the vehicle. The control is operable to provide each instruction only when the then current actual geographic position of the vehicle at least generally corresponds to the particular geographic location associated with the instruction.
Owner:DONNELLY CORP

Personal safety mobile notification system

In described embodiments, a system establishes a perimeter around an area, and mobile devices within the established perimeter communicate with a server that provides and collects personal and asset safety information. The provided information might enable users associated with the mobile devices to plan actions or take routes based on a given criteria, such as a safest route, through display on the mobile device. The collected information from the mobile device might be location, emergency event, environmental factors, sensor information and the like, which might then be communicated to users and / or administrators of the system. Location information, such as through global positioning system (GPS), might provide tracking of mobile devices and users or assets associated with each mobile device. GPS functionality associates latitude, longitude and elevation (X-Y-Z coordinate axis) data with the collected and provided information.
Owner:LIQUID RARITY EXCHANGE LLC

Location-based reminders

A mobile computing device, such as a personal digital assistant (PDA) or smart phone (102), is equipped with a location detector, such as a WLAN transceiver (112) or global positioning system (GPS) receiver (134), and is programmed with a condition detection program (145) by the user to suppress or modify reminder alerts (212) for an event scheduled in the calendar program (141) if a condition or status associated with scheduled event is detected by the condition detection program (145). The condition detection program (145) is further programmed to issue a reminder alert (210) if the condition or status is not detected.
Owner:GLOBALFOUNDRIES US INC

Location-Based filtering for a shopping agent in the physical world

An agent based system utilizes a Personal Digital Assistant (PDA)-based, Global Positioning System (GPS)-enabled information gathering agent that relies on knowledge of a shopper's physical location to support a shopping task while shopping at a mall. Shoppers indicate their shopping goals to the system. Then, as shoppers stroll through a mall, the system informs them of the availability of items of interest to them available in the immediately surrounding stores, as well as any cheaper local alternatives
Owner:KNAPP INVESTMENT

Wireless, internet-based medical-diagnostic system

A system for monitoring a patient's vital signs that features a vital-sign monitor including sensors for measuring from the patient at least one of the following vital-sign data: O2 saturation, blood pressure, electro-cardiogram, respirator rate, and blood glucose level. The system also includes a global positioning system that determines location-based data. A wireless transmitter, in electrical contact with the vital-sign monitor and global positioning system, receives the vital-sign and location-based data and wirelessly transmits these data through a conventional wireless network. A gateway software piece receives and processes the data from the wireless network and stores these data in a computer memory associated with a database software piece. The system also includes an Internet-based user interface that displays the vital sign data for both individual patients and care-providers.
Owner:SOTERA WIRELESS

System and method navigating indoors and outdoors without GPS. utilizing a network of sensors

The navigation system method described herein could guide people around urban environments, detect guide and navigate them to destinations, add-on to the portable phone. We have focused on the task of detecting and navigating even in situations in which Global Positioning Systems (GPS) cannot provide this information, such as when the person is indoors or in crowded urban areas where there is no line of site to the GPS satellites. The information will be received directly from RF sensors and will display on the existing cellular phone as Bluetooth application
Owner:BLUE UMBRELLA LLC

Distributed location based service system

A system, apparatus, and method for providing a distributed location based service system to a mobile user. Information related to a particular geographic location may be electronically transferred to a mobile electronic device, without a request from the user, and interpreted locally on the device in the form of a virtual map of location based resources. The mobile device is capable of determining its location using a GPS (Global Positioning System) or a process of measurement and prediction based on calculation. The mobile device can then use the location information and compare it to available location based resources within the device.
Owner:MOBILE ENHANCEMENT SOLUTIONS

Wireless, internet-based, medical diagnostic system

A system for monitoring a patient's vital signs that features a vital-sign monitor including sensors for measuring from the patient at least one of the following vital-sign data: O2 saturation, blood pressure, electrocardiogram, respirator rate, and blood glucose level. The system also includes a global positioning system that determines location-based data. A wireless transmitter, in electrical contact with the vital-sign monitor and global positioning system, receives the vital-sign and location-based data and wirelessly transmits these data through a conventional wireless network. A gateway software piece receives and processes the data from the wireless network and stores these data in a computer memory associated with a database software piece. The system also includes an Internet-based user interface that displays the vital sign data for both individual patients and care-providers.
Owner:TRIAGE DATA NETWORKS

LED light communication system

An LED light and communication system includes at least one optical transceiver, the optical transceiver including a light support and a processor. The light support has a plurality of light emitting diodes and at least one photodetector attached thereto, the light emitting diodes receiving power from a power source. The processor is in communication with the light emitting diodes and the at least one photodetector, the processor capable of illuminating the light emitting diodes to simultaneously create at least one first light signal, and at least one second light signal, the first light signal being observable to the unaided eyes of an individual and the second light signal not being observable to the unaided eyes of the individual. The second light signal includes at least one data packet. The at least one data packet comprises global positioning system (GPS) location information.
Owner:FEDERAL LAW ENFORCEMENT DEV SERVICES

Computer-aided system for 360º heads up display of safety/mission critical data

A safety critical, time sensitive data system for projecting safety / mission critical data onto a display pair of Commercial Off The Shelf (COTS) light weight projection glasses or monocular creating a virtual 360° HUD (Heads Up Display) with 6 degrees of freedom movement. The system includes the display, the workstation, the application software, and inputs containing the safety / mission critical information (Current User Position, Total Collision Avoidance System—TCAS, Global Positioning System—GPS, Magnetic Resonance Imaging—MRI Images, CAT scan images, Weather data, Military troop data, real-time space type markings etc.). The workstation software processes the incoming safety / mission critical data and converts it into a three dimensional space for the user to view. Selecting any of the images may display available information about the selected item or may enhance the image. Predicted position vectors may be displayed as well as 3D terrain.
Owner:REALTIME

Mobile communication system with position detection to facilitate hard handoff

A system for facilitating handoff adapted for use with a telecommunications network. The system includes position equipment for determining the location of a mobile transceiver within a region containing a first cell and a second cell. A comparison circuit compares the location with a predetermined handoff area within the region and provides a control signal in response thereto. A handoff initiation circuit initiates handoff of the mobile transceiver between the first cell and the second cell in response to the control signal. In a specific embodiment, the handoff is a hard handoff. The position equipment includes Global Positioning System (GPS) equipment including a mobile unit GPS receiver and signal interface. The comparison circuit includes a positional database that stores latitudinal and longitudinal information corresponding to the predetermined handoff area. The comparison circuit also includes a Code Division Multiple Access selector. The selector begins tracking the position of the mobile transceiver when it is within a predetermined range of the predetermined handoff area. In a specific embodiment, the handoff initiation circuit includes a base station controller. The position equipment includes a base station positional detection system and a mobile unit positional detection system for determining the location of the mobile transceiver. The position database has map information depicting the coverage area of the first and second cells and the predetermined handoff area. The selector runs software for comparing the location to the map information and providing the control signal when the location is within the predetermined handoff area. The base station includes and implements instructions for completing hard handoff in response to the control signal.
Owner:QUALCOMM INC

Communication interface device for managing wireless data transmission between a vehicle and the internet

An in-vehicle device data communicates with Internet based data processing resources for the purpose of transacting e-mail, e-commerce, and e-business. The in-vehicle device and the Internet based data processing resources can effectuate a wide variety of e-mail, e-commerce, and e-business including accessing auto part databases, warranty, customer, and other remote databases. In addition, e-mail, e-commerce, and e-business transactions can include vehicle security and vehicle service management, data communicating Internet based radio, audio, MP3, MPEG, video, and other types of data. Furthermore, e-mail, e-commerce, and e-business transactions can include interactive advertising, promotional offers, coupons, and supporting other remote data communications.The in-vehicle device can also include functionality for remote monitoring of vehicle performance, data communicating and accessing remote Internet based content and data, and effectuating adjustments and control of vehicle operation. Remote monitoring and control of vehicle operation can be by way of an Internet based data processing resource and can include engine control system programming and setting adjustment, vehicle monitoring, and transmission of vehicle telemetry and metric data. Vehicle telemetry and metric data can include global positioning system (GPS) data, vehicle operational data, engine performance data, and other vehicle data.The in-vehicle device can also wirelessly data communicate with a communication interface device (COM device) or an Internet appliance. Such COM devices or Internet appliances can data communicate wirelessly with an in-vehicle device and simultaneously data communicate in a wired or wireless mode of operation to Internet based data processing resources, and to other data processing resources.
Owner:CANTALOUPE INC

Dual Band Stacked Patch Antenna

One or more of the embodiments of a dual band stacked patch antenna described herein employ an integrated arrangement of a global positioning system (GPS) antenna and a satellite digital audio radio service (SDARS) antenna. The dual band antenna receives right hand circularly polarized GPS signals in a first frequency band, left hand circularly polarized SDARS signals in a second frequency band, and vertical linear polarized SDARS signals in the second band. The dual band antenna includes a ground plane element, an upper radiating element (which is primarily utilized to receive SDARS signals), dielectric material between the ground plane element and the upper radiating element, and a lower radiating element (which is primarily utilized to receive GPS signals) surrounded by the dielectric material. The dual band antenna uses only one conductive signal feed to receive both GPS and SDARS signals.
Owner:GM GLOBAL TECH OPERATIONS LLC

In-vehicle device for wirelessly connecting a vehicle to the internet and for transacting e-commerce and e-business

An in-vehicle device data communicates with Internet based data processing resources for the purpose of transacting e-mail, e-commerce, and e-business. The in-vehicle device and the Internet based data processing resources can effectuate a wide variety of e-mail, e-commerce, and e-business including accessing auto part databases, warranty, customer, and other remote databases. In addition, e-mail, e-commerce, and e-business transactions can include vehicle security and vehicle service management, data communicating Internet based radio, audio, MP3, MPEG, video, and other types of data. Furthermore, e-mail, e-commerce, and e-business transactions can include interactive advertising, promotional offers, coupons, and supporting other remote data communications.The in-vehicle device can also include functionality for remote monitoring of vehicle performance, data communicating and accessing remote Internet based content and data, and effectuating adjustments and control of vehicle operation. Remote monitoring and control of vehicle operation can be by way of an Internet based data processing resource and can include engine control system programming and setting adjustment, vehicle monitoring, and transmission of vehicle telemetry and metric data. Vehicle telemetry and metric data can include global positioning system (GPS) data, vehicle operational data, engine performance data, and other vehicle data.The in-vehicle device can also wirelessly data communicate with a communication interface device (COM device) or an Internet appliance. Such COM devices or Internet appliances can data communicate wirelessly with an in-vehicle device and simultaneously data communicate in a wired or wireless mode of operation to Internet based data processing resources, and to other data processing resources.
Owner:USA TECH INC

Method and system for managing personal and financial information

A system and method for managing personal and financial information is provided. The method involves: receiving financial transaction information for a purchase of the user, together with at least one attribute associated with the financial transaction information; storing the financial transaction information in association with the at least one attribute; and making the financial transaction information available for use under the control of the user. The attribute may be a financial account identifier, a financial account type, a purchase type or a purchase identifier. The method may also involve receiving a purchase location attribute defining a location for the purchase; determining a current location associated with a user mobile device using a global positioning system; and transmitting, if the purchase location attribute does not match the current location, a message to the mobile device for fraud detection purposes.
Owner:QUICKRECEIPT SOLUTIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products