Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

80954 results about "Human–computer interaction" patented technology

Human–computer interaction (HCI) researches the design and use of computer technology, focused on the interfaces between people (users) and computers. Researchers in the field of HCI observe the ways in which humans interact with computers and design technologies that let humans interact with computers in novel ways. As a field of research, human–computer interaction is situated at the intersection of computer science, behavioural sciences, design, media studies, and several other fields of study. The term was popularized by Stuart K. Card, Allen Newell, and Thomas P. Moran in their seminal 1983 book, The Psychology of Human–Computer Interaction, although the authors first used the term in 1980 and the first known use was in 1975. The term connotes that, unlike other tools with only limited uses (such as a hammer, useful for driving nails but not much else), a computer has many uses and this takes place as an open-ended dialog between the user and the computer. The notion of dialog likens human–computer interaction to human-to-human interaction, an analogy which is crucial to theoretical considerations in the field.

Method and system for gesture category recognition and training using a feature vector

A computer implemented method and system for gesture category recognition and training. Generally, a gesture is a hand or body initiated movement of a cursor directing device to outline a particular pattern in particular directions done in particular periods of time. The present invention allows a computer system to accept input data, originating from a user, in the form gesture data that are made using the cursor directing device. In one embodiment, a mouse device is used, but the present invention is equally well suited for use with other cursor directing devices (e.g., a track ball, a finger pad, an electronic stylus, etc.). In one embodiment, gesture data is accepted by pressing a key on the keyboard and then moving the mouse (with mouse button pressed) to trace out the gesture. Mouse position information and time stamps are recorded. The present invention then determines a multi-dimensional feature vector based on the gesture data. The feature vector is then passed through a gesture category recognition engine that, in one implementation, uses a radial basis function neural network to associate the feature vector to a pre-existing gesture category. Once identified, a set of user commands that are associated with the gesture category are applied to the computer system. The user commands can originate from an automatic process that extracts commands that are associated with the menu items of a particular application program. The present invention also allows user training so that user-defined gestures, and the computer commands associated therewith, can be programmed into the computer system.
Owner:ASSOCIATIVE COMPUTING +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products