Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4000 results about "Gesture recognition" patented technology

Gesture recognition is a topic in computer science and language technology with the goal of interpreting human gestures via mathematical algorithms. Gestures can originate from any bodily motion or state but commonly originate from the face or hand. Current focuses in the field include emotion recognition from face and hand gesture recognition. Users can use simple gestures to control or interact with devices without physically touching them. Many approaches have been made using cameras and computer vision algorithms to interpret sign language. However, the identification and recognition of posture, gait, proxemics, and human behaviors is also the subject of gesture recognition techniques. Gesture recognition can be seen as a way for computers to begin to understand human body language, thus building a richer bridge between machines and humans than primitive text user interfaces or even GUIs (graphical user interfaces), which still limit the majority of input to keyboard and mouse and interact naturally without any mechanical devices. Using the concept of gesture recognition, it is possible to point a finger at this point will move accordingly. This could make conventional input on devices such and even redundant.

Method and system for gesture category recognition and training using a feature vector

A computer implemented method and system for gesture category recognition and training. Generally, a gesture is a hand or body initiated movement of a cursor directing device to outline a particular pattern in particular directions done in particular periods of time. The present invention allows a computer system to accept input data, originating from a user, in the form gesture data that are made using the cursor directing device. In one embodiment, a mouse device is used, but the present invention is equally well suited for use with other cursor directing devices (e.g., a track ball, a finger pad, an electronic stylus, etc.). In one embodiment, gesture data is accepted by pressing a key on the keyboard and then moving the mouse (with mouse button pressed) to trace out the gesture. Mouse position information and time stamps are recorded. The present invention then determines a multi-dimensional feature vector based on the gesture data. The feature vector is then passed through a gesture category recognition engine that, in one implementation, uses a radial basis function neural network to associate the feature vector to a pre-existing gesture category. Once identified, a set of user commands that are associated with the gesture category are applied to the computer system. The user commands can originate from an automatic process that extracts commands that are associated with the menu items of a particular application program. The present invention also allows user training so that user-defined gestures, and the computer commands associated therewith, can be programmed into the computer system.
Owner:ASSOCIATIVE COMPUTING +1

Tracking and gesture recognition system particularly suited to vehicular control applications

A system and method tracks the movements of a driver or passenger in a vehicle (ground, water, air, or other) and controls devices in accordance with position, motion, and / or body or hand gestures or movements. According to one embodiment, an operator or passenger uses the invention to control comfort or entertainment features such the heater, air conditioner, lights, mirror positions or the radio / CD player using hand gestures. An alternative embodiment facilitates the automatic adjustment of car seating restraints based on head position. Yet another embodiment is used to determine when to fire an airbag (and at what velocity or orientation) based on the position of a person in a vehicle seat. The invention may also be used to control systems outside of the vehicle. The on-board sensor system would be used to track the driver or passenger, but when the algorithms produce a command for a desired response, that response (or just position and gesture information) could be transmitted via various methods (wireless, light, whatever) to other systems outside the vehicle to control devices located outside the vehicle. For example, this would allow a person to use gestures inside the car to interact with a kiosk located outside of the car.
Owner:JOLLY SEVEN SERIES 70 OF ALLIED SECURITY TRUST I
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products