Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42690 results about "Microcontroller" patented technology

A microcontroller (MCU for microcontroller unit) is a small computer on a single metal-oxide-semiconductor (MOS) integrated circuit chip. In modern terminology, it is similar to, but less sophisticated than, a system on a chip (SoC); an SoC may include a microcontroller as one of its components. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.

Electronic cigarette

An electronic cigarette has two tubes that resemble a cigarette: an electronic inhaler and an electronic atomizer. The two tubes are connected through one or more electric connectors to form an electronic cigarette. Inside the inhaler is a rechargeable or non-rechargeable power source such as a battery, which supplies electric power to the electronic inhaler and atomizer and ensures that both work together like a cigarette. In addition to the power source, the inhaler also includes other major components: an electric airflow sensor to detect air movement generated by a user's inhaling or puffing act and a Single Chip Micyoco which controls the atomization process. The sensor's role is to collect an airflow signal that triggers the Single Chip Micyoco, which in turn instructs the electronic cigarette to supply electric power to the inhaler and atomizer connected through an electric connector. Inside the electronic atomizer are an electric connector, electric heating wire, liquid container, and atomizer cap with an air-puffing hole. The user inhales through the air-puffing hole at an end of the electronic cigarette to create an air inflow, which triggers the atomization process. The Single Chip Micyoco driven by a software program controls the electronic cigarette in an on / off manner according to the signal detected by the electric sensor on the airflow and completes a cycle of atomization, which converts a solution of a liquid form inside the liquid container to a gas form. This entire process achieves the emulated smoking process of a user, who is satisfied with scent taste that mimics cigarette smoking.
Owner:VPR BRANDS LP

Wireless mesh point portable data terminal

A portable data terminal (PDT) adapted to participate in a wireless mesh network including a plurality of peer PDTs can comprise: a PDT module including an encoded information reading (EIR) device, and a mesh point (MP) module communicatively coupled to the PDT module. The MP module can include a microcontroller and at least one wireless communication interface and can be configured to perform IEEE 802.11-conformant wireless station services including authentication, de-authentication, privacy, and MAC service data unit delivery, and IEEE 802.11-conformant wireless distribution system services including association, disassociation, distribution, integration, and re-association. The MP module can be further configured, responsive to receiving a MAC frame addressed to a recipient inside the wireless mesh network, to deliver the MAC frame using the distribution service. The MP module can be further configured, responsive to receiving a MAC frame addressed to a recipient outside of the wireless mesh network, to deliver the MAC frame using the integration service. The MP module can be further configured to route an incoming MAC frame according to its destination address and the frame control field. The MP module can be further configured to cause the PDT module to exit said sleeping state responsive to receiving a mobile management software (MMS) wake-up command.
Owner:HAND HELD PRODS

System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure

A method and apparatus for the transcutaneous monitoring of blood gases generally comprises a blood gas data acquisition device, a vacuum source and a blood gas transducer unit. The blood gas transducer unit is adapted for application to a patient's skin and administration of a local vacuum at the area of patient application. It further comprises an electrochemical blood gas transducer, well known to those of ordinary skill in the art, which is disposed entirely within the local vacuum at the area of patient application. The vacuum source is placed in fluid communication with the blood gas transducer unit, through a hydrophobic membrane filter for safety purposes, in order to induce a condition of hyperperfusion in the locality of the electrochemical blood gas transducer. Under the control of a microcontroller, or equivalent means, the blood gas acquisition device is then utilized to capture a measure of skin surface oxygen or carbon dioxide pressure. The microcontroller can then utilize this measure to arrive at an estimate of arterial partial pressure of oxygen or carbon dioxide, accordingly. Because vacuum induced perfusion produces the requisite condition of hyperperfusion without local heating and, therefore, without acceleration of the local metabolic function, the present invention results in more accurate than previously available estimates of partial pressure blood gas pressures and does so while eliminating a significant risk for injury to the patient.
Owner:KCI LICENSING INC

Lighting systems and methods of auto-commissioning

A lighting system for areal illumination is disclosed which includes a remote driver and a plurality of fixtures including luminaires, control devices, and/or standalone sensors. The luminaires include a light source whose output light level can be adjusted, a light sensor co-located therewith adapted to measure light received from adjacent fixtures, and a microcontroller capable of transmitting the output of the light sensor over wires to the remote driver. The remote driver is capable of bidirectional communication with the luminaires and provides independently controllable power for the light sources of the luminaires. A method of commissioning a lighting system is also disclosed which includes installing a plurality of luminaires above the area to be illuminated, causing a light source co-located with each luminaire to emit a signal, detecting the signal at light sensors co-located with each luminaire, converting the signals obtained by the light sensors into distance measurements between luminaires, creating a map recording the relative location of luminaires, and assigning luminaires to groups based on their relative locations in the map. A movable orb region large enough to containing a plurality of luminaires can also be defined and the light levels of individual luminaires can be set according to a defined mathematical function of their location within the orb region, where the defined mathematical function sets light levels which vary from the center to the periphery of said orb region.
Owner:WTEC GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products