Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

784 results about "Object motion" patented technology

An object translates , or changes location, from one point to another. And an object rotates , or changes its attitude . In general, the motion of any object involves both translation and rotation. The translations are in direct response to external forces . The rotations are in direct response to external torques or moments (twisting forces).

Method and apparatus for determining orientation and position of a moveable object

An orientation and position tracking system in three-dimensional space and over a period of time utilizing multiple inertial and other sensors for determining motion parameters to measure orientation and position of a moveable object. The sensors, for example vibrational and angular velocity sensors, generate signals characterizing the motion of the moveable object. The information is received by a data acquisition system and processed by a microcontroller. The data is then transmitted via wireless communication to an external data reception system (locally based or a global network). The information can then be displayed and presented to the user through a variety of means including audio, visual, and tactile.
Owner:FORTESCUE CORP

System and method for object identification and behavior characterization using video analysis

In general, the present invention is directed to systems and methods for finding the position and shape of an object using video. The invention includes a system with a video camera coupled to a computer in which the computer is configured to automatically provide object segmentation and identification, object motion tracking (for moving objects), object position classification, and behavior identification. In a preferred embodiment, the present invention may use background subtraction for object identification and tracking, probabilistic approach with expectation-maximization for tracking the motion detection and object classification, and decision tree classification for behavior identification. Thus, the present invention is capable of automatically monitoring a video image to identify, track and classify the actions of various objects and the object's movements within the image. The image may be provided in real time or from storage. The invention is particularly useful for monitoring and classifying animal behavior for testing drugs and genetic mutations, but may be used in any of a number of other surveillance applications.
Owner:CLEVER SYS

Moving object detecting and tracing method in complex scene

The present invention discloses method for moving target detection and tracking in a complex scene. The method comprises two steps of multiple moving target detection and multiple moving target tracking: in the multiple moving target detection, a background model based on self adapting nonparametric kernel density estimation is established with the aim at the monitoring of the complex scene, therefore the disturbance of the movement of tiny objects can be effectively suppressed, the target shadow is eliminated, and the multiple moving target is detected; in the multiple moving target tracking, the target model is established, the moving state of the target is confirmed through ''matching matrix'', and corresponding tracking strategy is adopted according to the different movement condition of the target. Target information is ''recovered'' through the probabilistic reasoning method, and the target screening degree of the target is analyzed with the aim at the problem that multiple targets screen mutually. The algorithm of the present invention can well realize the moving target tracking, obtains the trace of the moving target, and has good real time and ability of adapting to the environmental variation. The present invention has wide application range and high accuracy, therefore being a core method for intelligent vision monitoring with versatility.
Owner:HUNAN UNIV

Proximity sensor device and method with improved indication of adjustment

A proximity sensor device and method is provided that facilitates improved system usability. Specifically, the proximity sensor device and method provide the ability for a user to easily cause adjustments in an electronic system using a proximity sensor device as a user interface. For example, it can be used to facilitate user interface navigation, such as scrolling. As another example, it can be used to facilitate value adjustments, such as changing a device parameter. To facilitate adjustment, the embodiments of the present invention provide a proximity sensor device that is adapted to indicate adjustment in a first way responsive to object motion in both of two opposite directions along a path proximate the touch sensor device. This facilitates use of the proximity sensor device by a user to indicate adjustments to an electronic device, and is particularly useful for indicating continuing adjustments.
Owner:SYNAPTICS INC

Object tracking using adaptive block-size matching along object boundary and frame-skipping when object motion is low

An object in a video sequence of frames is tracked by object masks generated for frames in the sequence. Macroblocks are motion compensated. Blocks matching entirely within a prior-frame object mask are used to generate an average object motion. When the average motion is below a motion threshold, frames are skipped at larger intervals, but more frequent frames are processed when high motion occurs. When the macroblock best matches a prior-frame block that has the object's boundary passing through the block, the macroblock is uncertain and is sub-divided into smaller sub-blocks that are again motion compensated. Sub-blocks matching blocks within the object mask in the base frame are added to the new object mask for the current frame while sub-blocks matching a block containing the object boundary are uncertain and can again be sub-divided to further refine the object boundary. Frame skipping and adaptive-size blocks on the object boundary reduce computational load.
Owner:INTELLECTUAL VENTURES I LLC

Vehicle control based on perception uncertainty

Aspects of the disclosure relate generally to maneuvering autonomous vehicles. Specifically, the vehicle may determine the uncertainty in its perception system and use this uncertainty value to make decisions about how to maneuver the vehicle. For example, the perception system may include sensors, object type models, and object motion models, each associated with uncertainties. The sensors may be associated with uncertainties based on the sensor's range, speed, and / or shape of the sensor field. The object type models may be associated with uncertainties, for example, in whether a perceived object is of one type (such as a small car) or another type (such as a bicycle). The object motion models may also be associated with uncertainties, for example, not all objects will move exactly as they are predicted to move. These uncertainties may be used to maneuver the vehicle.
Owner:WAYMO LLC

Method and apparatus for motion invariant imaging

Object motion during camera exposure often leads to noticeable blurring artifacts. Proper elimination of this blur is challenging because the blur kernel is unknown, varies over the image as a function of object velocity, and destroys high frequencies. In the case of motions along a 1D direction (e.g. horizontal), applicants show that these challenges can be addressed using a camera that moves during the exposure. Through the analysis of motion blur as space-time integration, applicants show that a parabolic integration (corresponding to constant sensor acceleration) leads to motion blur that is not only invariant to object velocity, but preserves image frequency content nearly optimally. That is, static objects are degraded relative to their image from a static camera, but all moving objects within a given range of motions reconstruct well. A single deconvolution kernel can be used to remove blur and create sharp images of scenes with objects moving at different speeds, without requiring any segmentation and without knowledge of the object speeds.
Owner:MASSACHUSETTS INST OF TECH

MRI system with means to eliminate object movement whilst acquiring its image

A method of reducing the effect of object movements along MRI imaging. The method includes: acquiring a sequence of MRI consecutive images of an object; storing on a computer readable medium, for each of the images, at least one parameter p indicating spatial image orientation at which the image was taken; analyzing the sequence of the images for detection of the object movement; and tagging images of at least one movement of the object.
Owner:ASPECT IMAGING

Self-referencing/body motion tracking non-invasive internal temperature distribution measurement method and apparatus using magnetic resonance tomographic imaging technique

A noninvasive image measuring method of measuring internal organ / tissue temperature using an MRI system. Temperature measurement insusceptible to body motion and spatial variation of magnetic field is realized by utilizing the position and size of a temperature change region as a priori information to determine the phase distribution of the complex magnetic resonance signal of water proton at a given temperature point and by subtracting the phase distribution before the temperature change estimated (self-referred) from the phase distribution in the peripheral region for each pixel of the image, thereby eliminating the subtraction process of image before and after temperature change. The precision of temperature measurement can be enhanced by estimating a complex curved surface formed of the peripheral region in each temperature change region of the real-part and imaginary-part images of the complex magnetic resonance signal, and calculating the phase difference between an actually measured complex signal distribution and the estimated complex signal distribution of the complex signal distribution for each pixel, thereby reducing the estimation error due to phase transition from −π to +π occurring in a phase distribution. Furthermore, temperature can be measured through optimal imaging following up body motion by using an optical positioning system in combination even if the part being measured is shifted.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products