Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3045 results about "Depth of field" patented technology

For many cameras, depth of field (DOF) is the distance between the nearest and the farthest objects that are in acceptably sharp focus in an image. The depth of field can be calculated based on focal length, distance to subject, the acceptable circle of confusion size, and aperture. A particular depth of field may be chosen for technical or artistic purposes. Limitations of depth of field can sometimes be overcome with various techniques/equipment.

Systems and Methods for Synthesizing Images from Image Data Captured by an Array Camera Using Restricted Depth of Field Depth Maps in which Depth Estimation Precision Varies

ActiveUS20140267243A1Great depth estimation precisionHigh depth estimateImage enhancementImage analysisImaging processingViewpoints
Systems and methods are described for generating restricted depth of field depth maps. In one embodiment, an image processing pipeline application configures a processor to: determine a desired focal plane distance and a range of distances corresponding to a restricted depth of field for an image rendered from a reference viewpoint; generate a restricted depth of field depth map from the reference viewpoint using the set of images captured from different viewpoints, where depth estimation precision is higher for pixels with depth estimates within the range of distances corresponding to the restricted depth of field and lower for pixels with depth estimates outside of the range of distances corresponding to the restricted depth of field; and render a restricted depth of field image from the reference viewpoint using the set of images captured from different viewpoints and the restricted depth of field depth map.
Owner:FOTONATION LTD

Hand-held two-dimensional symbology reader having a focussing guide

An optical reader is suitable for reading 2-dimensional indicia. The optical reading device, that may include a bar code reader, comprises a guide whose length along the optical reader optical axis is such that when that guide contacts the part or equipment surrounding the indicia to be read, that indicia is within the optical reader depth of field. The reader comprises a housing having therein a source of illumination and optics for producing a diverging beam for illuminating indica. A spacing element transparent guide is removably attached to the housing, and does not block indicia. The line of contact of the guide with the data carrier is substantially fully visible to the operator, who can thus confirm that the guide is in proper operating position relative to the indica prior to initiating a reading operation. A reading operation can be initiated by pressing on the guide to actuate a switch, or on a manual trigger.
Owner:WELCH ALLYN DATA COLLECTION

Optical scanning head

The [ornamental] design for a bar code Scanner using the Light Emitting Diode (LED), Optical Scanner assembly and Charge-Coupled Devices (CCD) capable of reading the barcode symbols at the variable distance, as shown and described. The optical passive elements for increasing the depth of field and method of fabricating the scanning head by mass-production techniques are also disclosed.
Owner:SYMBOL TECH INC

Ophthalmic dynamic aperture

Embodiments of the present invention relate to an electro-active element having a dynamic aperture. The electro-active element provides increased depth of field and may be used in a non-focusing ophthalmic device that that is spaced apart from but in optical communication with an intraocular lens, a corneal inlay, a corneal onlay, a contact lens, or a spectacle lens that provide an optical power. The electro-active element provides increased depth of field and may also be used in a focusing or non-focusing device such as an intraocular optic, an intraocular lens, a corneal inlay, a corneal onlay, or a contact lens which may or may not have an optical power. By changing the diameter of dynamic aperture either increased depth of field or increased light reaching the retina may be achieved.
Owner:E VISION LLC +1

Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field

An improved opto-electronic imaging system which is adapted for use with incoherently illuminated objects, and which produces final images having a reduced imaging error content. The imaging system includes an optical assembly for forming an intermediate image of the object to be imaged, an image sensor for receiving the intermediate image and producing an intermediate image signal, and processing means for processing the intermediate image signal to produce a final image signal having a reduced imaging error content. A reduction in imaging error content is achieved, in part, by including in the optical assembly a phase mask for causing the OTF of the optical assembly to be relatively invariant over a range of working distances, and an amplitude mask having a transmittance that decreases continuously as a function of distance from the center thereof. The reduction in imaging error content is also achieved, in part, by including in the processing means an improved generalized recovery function that varies in accordance with at least the non-ideal calculated IOTF of the optical assembly under a condition of approximately optimum focus.
Owner:HAND HELD PRODS

Graphics system using sample masks for motion blur, depth of field, and transparency

A method and apparatus for creating motion blur, depth of field, and screen door effects when rendering three-dimensional graphics data are disclosed. A graphics system configured with a graphics processor, a super-sampled sample buffer, and a sample-to-pixel calculation unit is disclosed. The graphics processor may be configured to use a sample mask to select different subsets of sample coordinates to be rendered for a particular frame. Each subset may be rendered applying a different set of attributes, and the resulting samples may then be stored together in the sample buffer. The sample-to-pixel calculation unit may be configured to filter the samples into output pixels that are provided to a display device. The attributes that may be changed from subset to subset include the viewpoint, the time at which objects in the data are rendered, which objects or geometric primitives in the data are rendered, the position of objects in the data, the color of objects in the data, the transparency of objects in the data, and the shape of objects in the data.
Owner:ORACLE INT CORP

Materials and methods for simulating focal shifts in viewers using large depth of focus displays

A large depth of focus (DOF) display provides an image in which the apparent focus plane is adjusted to track an accommodation (focus) of a viewer's eye(s) to more effectively convey depth in the image. A device is employed to repeatedly determine accommodation as a viewer's gaze within the image changes. In response, an image that includes an apparent focus plane corresponding to the level of accommodation of the viewer is provided on the large DOF display. Objects that are not at the apparent focus plane are made to appear blurred. The images can be rendered in real-time, or can be pre-rendered and stored in an array. The dimensions of the array can each correspond to a different variable. The images can alternatively be provided by a computer controlled, adjustable focus video camera in real-time.
Owner:UNIV OF WASHINGTON

Camera module with lens array

A camera module includes a plurality of lenses with different focal lengths, a supporting plate, an image sensor, and a processor. The supporting plate defines a plurality of through holes receiving the corresponding lenses. The image sensor includes a sensing area. The sensing area is configured for receiving light through the lenses and the through holes and converting the light into electrical signals. The processor is electrically connected to the image sensor. The processor is configured for processing the electrical signals to form sub-images of a same view of same objects with different depths of field and then combining the sub-images into a final image.
Owner:HON HAI PRECISION IND CO LTD

Graphics system using sample tags for blur

A graphics system and method for performing blur effects, including motion blur and depth of field effects, are disclosed. In one embodiment the system comprises a graphics processor, a sample buffer, and a sample-to-pixel calculation unit. The graphics processor is configured to receive a set of three-dimensional (3D) graphics data and render a plurality of samples based on the set of 3D graphics data. The processor is also configured to generate sample tags for the samples, wherein the sample tags are indicative of whether or not the samples are to be blurred. The super-sampled sample buffer is coupled to receive and store the samples from the graphics processor. The sample-to-pixel calculation unit is coupled to receive and filter the samples from the super-sampled sample buffer to generate output pixels, which in turn are displayable to form an image on a display device. The sample-to-pixel calculation units are configured to select the filter attributes used to filter the samples into output pixels based on the sample tags.
Owner:ORACLE INT CORP

Contrast-enhancing aspheric intraocular lens

The present invention provides an intraocular lens (IOL) having an optic with a posterior and an anterior refractive surfaces, at least one of which has an aspherical profile, typically characterized by a non-zero conic constant, for controlling the aberrations of a patient's eye in which the IOL is implanted. Preferably, the IOL's asphericity, together with the aberrations of the patient's eye, cooperate to provide an image contrast characterized by a calculated modulation transfer function (MTF) of at least about 0.25 and a depth of field of at least about 0.75 Diopters.
Owner:ALCON INC +1

Method for creating a depth map for auto focus using an all-in-focus picture and two-dimensional scale space matching

An imaging acquisition system that generates a depth map for a picture of a three dimension spatial scene from the estimated blur radius of the picture is described. The system generates an all-in-focus reference picture of the three dimension spatial scene. The system uses the all-in-focus reference picture to generate a two-dimensional scale space representation. The system computes the picture depth map for a finite depth of field using the two-dimensional scale space representation.
Owner:SONY CORP +1

Compact camera module with lens array

A camera module includes a plurality of lenses with different focal lengths, a supporting plate, an image sensor, and a processor. The supporting plate defines a plurality of through holes receiving the corresponding lenses. The image sensor includes a sensing area. The sensing area is configured for receiving light through the lenses and the through holes and converting the light into electrical signals. The processor is electrically connected to the image sensor. The processor is configured for processing the electrical signals to form sub-images of a same view of same objects with different depths of field and then combining the sub-images into a final image.
Owner:HON HAI PRECISION IND CO LTD

System, method and computer-accessible medium for depth of field imaging for three-dimensional sensing utilizing a spatial light modulator microscope arrangement

ActiveUS20150369660A1Efficiently modulate the intensity, phase, and/or polarization of incident radiationSolid-state devicesRadiating elements structural formsElectrical conductorPlanar antennas
Exemplary embodiment can utilize the properties of tunable thin-film, material (e.g., graphene) to efficiently modulate the intensity, phase, and / or polarization of transmitted and / or reflected radiation, including mid-infrared (“mid-IR”) radiation. Exemplary embodiments include planar antennas comprising tunable thin-film material sections and metallic sections disposed in contact with the tunable thin-film material sections, each metallic section having a gap with at least one dimension related to a wavelength of the radiation, which in some embodiments may be less than the wavelength. The metallic layer may comprise rods arrange in one or more shapes, or one or more apertures of one or more shapes. Embodiments of the antenna may also comprise a substrate, which may be a semiconductor or conductor in various embodiments. Embodiments also include systems, computer-implemented methods, devices, and computer-readable media for effectuating desired modulation of incident radiation by, e.g., varying the doping level of the tunable thin-film material.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Method and system for high resolution, ultra fast 3-d imaging

A high-speed three-dimensional imaging system includes a single lens camera subsystem with an active imaging element and CCD element, and a correlation processing subsystem. The active imaging element can be a rotating aperture which allows adjustable non-equilateral spacing between defocused images to achieve greater depth of field and higher sub-pixel displacement accuracy. A speckle pattern is projected onto an object and images of the resulting pattern are acquired from multiple angles. The images are locally cross-correlated using a sparse array image correlation technique and the surface is resolved by using relative camera position information to calculate the three-dimensional coordinates of each locally correlated region. Increased resolution and accuracy are provided by recursively correlating the images down to the level of individual points of light and using the Gaussian nature of the projected speckle pattern to determine subpixel displacement between images. Processing is done at very high-speeds by compressing the images before they are correlated. Correlation errors are eliminated during processing by a technique based on the multiplication of correlation table elements from one or more adjacent regions.
Owner:MASSACHUSETTS INST OF TECH

Plenoptic camera with large depth of field

Methods and apparatus for light-field capture with large depth of field. A design methodology is described in which the relationships among various plenoptic camera parameters, including inverse magnification, F-number, focal length, wavelength, and pixel size, may be analyzed to design plenoptic cameras that provide increased depth-of-field when compared to conventional plenoptic cameras. Plenoptic cameras are described, which may be implemented according to the design methodology, and in which both Keplerian telescopic and Galilean telescopic imaging can be realized at the same time while providing a larger depth of field than is realized in conventional plenoptic cameras, thus capturing light-field images that capture “both sides” in which all but a small region of the scene is in focus. In some embodiments, apertures may be added to the microlenses so that depth of field is increased.
Owner:ADOBE INC

Camera that combines the best focused parts from different exposures to an image

The object of the present invention is to eliminate hitherto restrictive conditions related to photography, like when attempting to register pictures with infinite depth of field, more or less, or attempt full detail-reproduction of light and shade. This is, according to the present invention, accomplished by making several recordings with differing states of focus or exposure, the images registered being similarly subdivided into smaller image-parts and a resultant image bing produced by selecting those image-parts from each set, being most suitable. Optimal image definition of an image-part can for instance be assessed by contrast-measurement techniques or separate range-finding with a laser. An analogous optimal representation of image detail can also be achieved.
Owner:AFSENIUS SVEN AKE +1

Aspheric lenses

The present invention provides monofocal ophthalmic lenses that exhibit extended depth of field while providing sufficient contrast for resolution of an image over a selected range of defocus distances. In some embodiments, a lens of the invention can include a refractive surface having controlled surface modulations relative to a base profile. The surface modulations are designed to extend a depth of field of the lens such that a single image can be resolved, albeit with somewhat less contrast, over a range of distances greater than the focal region of a conventional lens. The ophthalmic lenses of the invention can be employed in various vision correction applications, including, but not limited to, intraocular lenses, contact lenses, instrastromal implants and other refractive devices.
Owner:ALCON INC

Method and apparatus for using a virtual camera to dynamically refocus a digital image

One embodiment of the present invention provides a system that dynamically refocuses an image to simulate a focus plane and a depth-of-field of a virtual camera. During operation, the system receives an input image, wherein the input image includes depth information for pixels in the input image. The system also obtains parameters that specify the depth-of-field d and the location of the focus plane for the virtual camera. Next, the system uses the depth information and the parameters for the virtual camera to refocus the image. During this process, for each pixel in the input image, the system uses the depth information and the parameters for the virtual camera to determine a blur radius B for the pixel. The system then uses the blur radius B for the pixel to determine whether the pixel contributes to neighboring pixels in the refocused image.
Owner:ADOBE INC

Super light-field lens

Light field imaging systems, and in particular light field lenses that can be mated with a variety of conventional cameras (e.g., digital or photographic / film, image and video / movie cameras) to create light field imaging systems. Light field data collected by these light field imaging systems can then be used to produce 2D images, right eye / left eye 3D images, to refocus foreground images and / or background images together or separately (depth of field adjustments), and to move the camera angle, as well as to render and manipulate images using a computer graphics rendering engine and compositing tools.
Owner:PIXAR ANIMATION

Extended depth of field imaging system using chromatic aberration

ActiveUS7224540B2Lower optical magnificationHigh intensity illuminationRadiation pyrometryMaterial analysis by optical meansFocal positionDepth of field
An imaging system (FIG. 3) is disclosed that has a wavelength dependent focal shift caused by longitudinal chromatic aberration in a lens assembly (203) that provides extended depth of field imaging due to focal shift (213,214) and increased resolution due to reduced lens system magnification. In use, multiple wavelengths of quasi-monochromatic illumination, from different wavelength LEDs (206,207) or the like, illuminate the target, either sequentially, or in parallel in conjunction with an imager (200) with wavelength selective (colored) filters. Images are captured with different wavelengths of illumination that have different focus positions (208,209), either sequentially or by processing the color planes of a color imager separately. Extended depth of field, plus high resolution are achieved. Additionally, information about the range to the target can be determined by analyzing the degree of focus of the various colored images.
Owner:PSC SCANNING INC

Multi-photon laser microscopy

A laser scanning microscope produces molecular excitation in a target material by simultaneous absorption of three or more photons to thereby provide intrinsic three-dimensional resolution. Fluorophores having single photon absorption in the short (ultraviolet or visible) wavelength range are excited by a beam of strongly focused subpicosecond pulses of laser light of relatively long (red or infrared) wavelength range. The fluorophores absorb at about one third, one fourth or even smaller fraction of the laser wavelength to produce fluorescent images of living cells and other microscopic objects. The fluorescent emission from the fluorophores increases cubicly, quarticly or even higher power law with the excitation intensity so that by focusing the laser light, fluorescence as well as photobleaching are confined to the vicinity of the focal plane. This feature provides depth of field resolution comparable to that produced by confocal laser scanning microscopes, and in addition reduces photobleaching and phototoxicity. Scanning of the laser beam by a laser scanning microscope, allows construction of images by collecting multi-photon excited fluorescence from each point in the scanned object while still satisfying the requirement for very high excitation intensity obtained by focusing the laser beam and by pulse time compressing the beam. The focused pulses also provide three-dimensional spatially resolved photochemistry which is particularly useful in photolytic release of caged effector molecules, marking a recording medium or in laser ablation or microsurgery. This invention refers explicitly to extensions of two-photon excitation where more than two photons are absorbed per excitation in this nonlinear microscopy.
Owner:WEBB WATT W +1

Image capture unit and method with an extended depth of field

In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
Owner:INTUITIVE SURGICAL OPERATIONS INC

System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser

A system and method for increasing the amplitude of accommodation and / or changing the refractive power of lens material of a natural crystalline lens is provided. Generally, there is provided methods and systems for delivering a laser beam to a lens of an eye in a plurality of patterns results in the increased accommodative amplitude and / or refractive power of the lens. There is further provided a system and method of treating presbyopia by increasing both the flexibility of the human lens and the depth of field of the eye.
Owner:LENSAR LLC

High dynamic range & depth of field depth camera

In order to maximize the dynamic range and depth of field for a depth camera used in a time of flight system, the light source is modulated at a plurality of different frequencies, a plurality of different peak optical powers, a plurality of integration subperiods, a plurality of lens foci, aperture and zoom settings during each camera frame time. The different sets of settings effectively create subrange volumes of interest within a larger aggregate volume of interest, each having their own frequency, peak optical power, lens aperture, lens zoom and lens focus products consistent with the distance, object reflectivity, object motion, field of view, etc. requirements of various ranging applications.
Owner:LUMENTUM OPERATIONS LLC

Method and apparatus for increasing depth of field for an imager

An imaging method and apparatus is disclosed which improves the depth of field of an image by, in one exemplary embodiment, capturing a plurality of images at respective different focus positions, and combines the images into one image and sharpens the one image. In an alternative exemplary embodiment, a single image is captured while the focus positions change during image capture, and the resulting image is sharpened.
Owner:APTINA IMAGING CORP

Hybrid optics for near-eye displays

A method for displaying a near-eye light field display (NELD) image is disclosed. The method comprises determining a pre-filtered image to be displayed, wherein the pre-filtered image corresponds to a target image. It further comprises displaying the pre-filtered image on a display. Subsequently, it comprises producing a near-eye light field after the pre-filtered image travels through a microlens array adjacent to the display, wherein the near-eye light field is operable to simulate a light field corresponding to the target image. Finally, it comprises altering the near-eye light field using at least one converging lens, wherein the altering allows a user to focus on the target image at an increased depth of field at an increased distance from an eye of the user and wherein the altering increases spatial resolution of said target image.
Owner:NVIDIA CORP

Capsule endoscope

A capsule endoscope is disclosed that includes a light source, an objective optical system that forms an image of an object that is illuminated by the light source, an image pickup device that receives the image formed by the objective optical system; and a transparent cover that is positioned in front of the objective optical system. Specified conditions are satisfied by the objective optical system so that objects having a shape that conforms with the shape of the transparent cover at the periphery of the field of view, as well as more distant objects on-axis, are within the depth of field of the objective optical system's field of view. The transparent cover itself is purposely kept from being within the depth of field of the objective optical system's field of view.
Owner:OLYMPUS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products