Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2064 results about "Microscopy" patented technology

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

Tomographic phase microscopy

The present invention relates to systems and methods for quantitative three-dimensional mapping of refractive index in living or non-living cells, tissues, or organisms using a phase-shifting laser interferometric microscope with variable illumination angle. A preferred embodiment provides tomographic imaging of cells and multicellular organisms, and time-dependent changes in cell structure and the quantitative characterization of specimen-induced aberrations in high-resolution microscopy with multiple applications in tissue light scattering.
Owner:MASSACHUSETTS INST OF TECH

Dendritic Polymers With Enhanced Amplification and Interior Functionality

Dendritic polymers with enhanced amplification and interior functionality are disclosed. These dendritic polymers are made by use of fast, reactive ring-opening chemistry (or other fast reactions) combined with the use of branch cell reagents in a controlled way to rapidly and precisely build dendritic structures, generation by generation, with cleaner chemistry, often single products, lower excesses of reagents, lower levels of dilution, higher capacity method, more easily scaled to commercial dimensions, new ranges of materials, and lower cost. The dendritic compositions prepared have novel internal functionality, greater stability (e.g., thermal stability and less or no reverse Michael's reaction), and reach encapsulation surface densities at lower generations. Unexpectedly, these reactions of polyfunctional branch cell reagents with polyfunctional cores do not create cross-linked materials. Such dendritic polymers are useful as demulsifiers for oil / water emulsions, wet strength agents in the manufacture of paper, proton scavengers, polymers, nanoscale monomers, calibration standards for electron microscopy, making size selective membranes, and agents for modifying viscosity in aqueous formulations such as paint. When these dendritic polymers have a carried material associated with their surface and / or interior, then these dendritic polymers have additional properties for carrying materials due to the unique characteristics of the dendritic polymer, such as for drug delivery, transfection, and diagnostics.
Owner:DENDRITIC NANO TECH INC

Analysis of circulating tumor cells, fragments, and debris

The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CellSpotter® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
Owner:MENARINI SILICON BIOSYSTEMS SPA

Confocal self-interference microscopy from which side lobe has been removed

The present invention relates to confocal self-interference microscopy. The confocal self-interference microscopy further includes a first polarizer for polarizing reflected or fluorescent light from a specimen, a first birefringence wave plate for separating the light from the first polarizer into two beams along a polarizing direction, a second polarizer for polarizing the two beams from the first birefringence wave plate, a second birefringence wave plate for separating the two beams from the second polarizer into four beams along the polarizing direction, and a third polarizer for polarizing the four beams from the second birefringence wave plate, in the existing confocal microscopy. Optic-axes of the first and second birefringence wave plates exist on the same plane, optic-axes of the first and second birefringence wave plates are inclined from an optical axis of the entire optical system at a predetermined angle, and self-interference spatial periods of the first and second birefringence wave plates are different from each other.
Owner:KOREA ADVANCED INST OF SCI & TECH

In situ nucleic acid sequencing of expanded biological samples

The invention provides in situ nucleic acid sequencing to be conducted in biological specimens that have been physically expanded. The invention leverages the techniques for expansion microscopy (ExM) to provide new methods for in situ sequencing of nucleic acids as well as new methods for fluorescent in situ sequencing (FISSEQ) in a new process referred to herein as “expansion sequencing” (ExSEQ).
Owner:MASSACHUSETTS INST OF TECH +1

Spectroscopic microscopy with image-driven analysis

In a spectroscopic microscope, a video image of a specimen is analyzed to identify regions having different appearances, and thus presumptively different properties. The sizes and locations of the identified regions are then used to position the specimen to align each region with an aperture, and to set the aperture to a size appropriate for collecting a spectrum from the region in question. The spectra can then be analyzed to identify the substances present within each region of the specimen. Information on the identified substances can then be presented to the user along with the image of the specimen.
Owner:THERMO ELECTRONICS SCI INSTR LLC

Structured plane illumination microscopy

An apparatus includes a light source configured for generating a coherent light beam having a wavelength, λ, a light detector, and beam-forming optics configured for receiving the generated light beam and for generating a plurality of substantially parallel Bessel-like beams directed into a sample in a first direction. Each of the Bessel-like beams has a fixed phase relative to the other Bessel-like beams. Imaging optics are configured for receiving light from a position within the sample that is illuminated by the Bessel-like beams and for imaging the received light onto the detector. The imaging optics include a detection objective having an axis oriented in a second direction that is non-parallel to the first direction, where the detector is configured for detecting light received by the imaging optics. A processor configured to generate an image of the sample based on the detected light.
Owner:HOWARD HUGHES MEDICAL INST

Method and apparatus for image processing

Identifying objects in images is a difficult problem, particularly in cases an original image is noisy or has areas narrow in color or grayscale gradient. A technique employing a convolutional network has been identified to identify objects in such images in an automated and rapid manner. One example embodiment trains a convolutional network including multiple layers of filters. The filters are trained by learning and are arranged in successive layers and produce images having at least a same resolution as an original image. The filters are trained as a function of the original image or a desired image labeling; the image labels of objects identified in the original image are reported and may be used for segmentation. The technique can be applied to images of neural circuitry or electron microscopy, for example. The same technique can also be applied to correction of photographs or videos.
Owner:MASSACHUSETTS INST OF TECH +1

Method and apparatus for three-dimensional microscopy with enhanced resolution

A method and apparatus for three dimensional optical microscopy is disclosed which employs dual opposing objective lenses about a sample and extended incoherent illumination to provide enhanced depth or Z.Iadd.-.Iaddend.direction resolution. In a first embodiment, observed light from both objective lenses are brought into coincidence on an image detector and caused to interfere thereon by optical path length adjustment. In a second embodiment, illuminating light from an extended incoherent light source is detected to the sample through both objective lenses and caused to interfere with a section of the sample by adjusting optical path lengths. Observed light from one objective lens is then recorded. In a third embodiment, which combines the first two embodiments, illuminating light from an extended incoherent light source is directed to the sample through both objective lenses and caused to interfere within a section of the sample by adjusting optical path lengths. The observed light from both lenses is caused to interfere on the image detector by the same optical path length adjustment. .Iadd.In a fourth embodiment of the invention, further spatial structure is introduced into the illumination light. Computational processing is used to enhance lateral or XY resolution as well as depth or Z resolution..Iaddend.
Owner:RGT UNIV OF CALIFORNIA

Analysis of circulating tumor cells, fragments, and debris

The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CellSpotter® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
Owner:MENARINI SILICON BIOSYSTEMS SPA

Method of detecting single gene copies in-situ

A method for detecting single copies of a gene in-situ using brightfield microscopy is used in detection of nucleic acid sequences. Probes are directly or indirectly labeled with alkaline phosphatase with NBT / BCIP used as the chromogen.
Owner:VENTANA MEDICAL SYST INC

Method and device for photothermal examination of microinhomogeneities

The invention relates to optical microscopy, and more particularly to the methods for photothermal examination of absorbing microheterogeneities using laser radiation. The invention can be widely used in laser technique, industry, and biomedicine to examine transparent objects with absorbing submicron fragments, including detection of local impurities and defects in super-pure optical and semiconducting materials and non-destructive diagnostics of biological samples on cellular and subcellular levels.The object of the present invention is to increase sensitivity, spatial resolution and informative worth when examining local absorbing heterogeneities in transparent objects, as well as to detect the size of said heterogeneities even if said size is smaller than the radiation wavelength used.Said object is achieved by the pump beam irradiation of a sample, the duration of said irradiation not being longer than the characteristic time of cooling of the microheterogeneity observed. A relatively vast surface of the sample is irradiated at once, the size of said surface not being larger than the wavelength of the pump laser used. The refraction index thermal variations, induced by the pump beam in the sample and being the result of absorption, are registered by the parameter change of the probe laser beam. A chosen probe beam diameter should not be smaller than the pump beam diameter. The diffraction-limited phase distribution over the probe laser beam cross-section is transformed to an amplitude image using a phase contrast method. The properties of microheterogeneities are estimated by measuring said amplitude image.
Owner:LAPOTKO TATIANA MS

Monolayer and/or Few-Layer Graphene On Metal or Metal-Coated Substrates

Graphene is a single atomic layer of sp2-bonded C atoms densely packed into a two-dimensional honeycomb crystal lattice. A method of forming structurally perfect and defect-free graphene films comprising individual mono crystalline domains with in-plane lateral dimensions of up to 200 μm or more is presented. This is accomplished by controlling the temperature-dependent solubility of interstitial C of a transition metal substrate having a suitable surface structure. At elevated temperatures, C is incorporated into the bulk at higher concentrations. As the substrate is cooled, a lowering of the interstitial C solubility drives a significant amount of C atoms to the surface where graphene islands nucleate and gradually increase in size with continued cooling. Ru(0001) is selected as a model system and electron microscopy is used to observe graphene growth during cooling from elevated temperatures. With controlled cooling, large arrays of macroscopic single-crystalline graphene domains covering the entire transition metal surface are produced. As the graphene domains coalesce to a complete layer, a second graphene layer is formed, etc. By controlling the interstitial C concentration and the cooling rate, graphene layers with thickness up to 10 atomic layers or more are formed in a controlled, layer-by-layer fashion.
Owner:BROOKHAVEN SCI ASSOCS

Robotic microscopy systems

The invention comprises a robotic microscope system and methods that allow high through-put analysis biological materials, particularly living cells, and allows precise return to and re-imaging of the same field (e.g., the same cell) that has been imaged earlier. This capability enables experiments and testing hypotheses that deal with causality over time intervals which are not possible with conventional microscopy methods.
Owner:THE J DAVID GLADSTONE INST A TESTAMENTARY TRUST ESTABLISHED UNDER THE WILL OF J DAVID GLADS

DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

An apparatus and method for performing nucleic acid (DNA and / or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy / electrostatic force microscopy (AFM / EFM) probing for nanoscale reading of the nucleic acid sequences.
Owner:UT BATTELLE LLC

Back-end-of-line metallization inspection and metrology microscopy system and method using x-ray fluorescence

Systems and methods for performing inspection and metrology operations on metallization processes such as on back-end-of-line (BEOL) metallization thickness and step coverage are disclosed. Specific examples include measurements of thickness and uniformity of barrier layers, including tantalum for example, and seed layers, including copper for example, in Damascene, including dual-Damascene, trenches during the interconnect fabrication steps of integrated circuit production. The invention also relates to the detection and measurement of void formation during and after copper electroplating. The invention utilizes x-ray fluorescence to measure the absolute thicknesses and the thickness uniformity of the barrier layers in the trenches, the copper seed layers for electroplating, and the final copper interconnects.
Owner:XRADIA

Arrayed biomolecules and their use in sequencing

A device comprising an array of molecules immobilised on a solid surface is disclosed, wherein the array has a surface density which allows each molecule to be individually resolved, e.g. by optical microscopy. Therefore, the arrays of the present invention consist of single molecules that are more spatially distinct than the arrays of the prior art.
Owner:ILLUMINA CAMBRIDGE LTD

Nanoscale Imaging of Proteins and Nucleic Acids via Expansion Microscopy

ActiveUS20170067096A1Use diversityMicrobiological testing/measurementPreparing sample for investigationNew Approach to AppraisalBio-Specimen
The invention enables in situ genomic and transcriptomic assessment of nucleic acids to be conducted in biological specimens that have been physically expanded. The invention leverages the techniques for expansion microscopy (ExM) to provide new methods for in situ genomic and transcriptomic assessment of nucleic in a new process referred to herein as “expansion fluorescent in situ hybridization” (ExFISH).
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Electrical process monitoring using mirror-mode electron microscopy

One embodiment relates to a method of inspecting a substrate using electrons. Mirror-mode electron-beam imaging is performed on a region of the substrate at multiple voltage differences between an electron source and a substrate, and image data is stored corresponding to the multiple voltage differences. A calculation is made of a measure of variation of an imaged aspect of a feature in the region with respect to the voltage difference between the electron source and the substrate. Other embodiments and features are also disclosed.
Owner:KLA TENCOR TECH CORP

Automated segmentation, classification, and tracking of cell nuclei in time-lapse microscopy

InactiveUS20060127881A1Efficient dynamic cell imaging studyIncrease capacityImage enhancementImage analysisAutomated segmentationInterphase Cell
Methods and apparatus are provided for the automated analysis of images of living cells acquired by time-lapse microscopy. The new methods and apparatus can be used for the segmentation, classification and tracking of individual cells in a cell population, and for the extraction of biologically significant features from the cell images. Based upon certain extracted features, the inventive image analysis methods can characterize a cell as mitotic or interphase and / or can classify a cell into one of the following mitotic phases: prophase, metaphase, arrested metaphase, and anaphase with high accuracy.
Owner:THE BRIGHAM & WOMENS HOSPITAL INC

Protein Microscope

A system and method for analyzing and imaging a sample containing molecules of interest combines modified MALDI mass spectrometer and SNOM devices and techniques, and includes: (A) an atmospheric-pressure or near-atmospheric-pressure ionization region; (B) a sample holder for holding the sample; (C) a laser for illuminating said sample; (D) a mass spectrometer having at least one evacuated vacuum chamber; (E) an atmospheric pressure interface connecting said ionization region and said mass spectrometer; (F) a scanning near-field optical microscopy instrument comprising a near-field probe for scanning the sample; a vacuum capillary nozzle for sucking in particles which are desorbed by said laser, the nozzle being connected to an inlet orifice of said atmospheric pressure interface; a scanner platform connected to the sample holder, the platform being movable to a distance within a near-field distance of the probe; and a controller for maintaining distance information about a current distance between said probe and said sample; (G) a recording device for recording topography and mass spectrum measurements made during scanning of the sample with the near-field probe; (H) a plotting device for plotting said topography and mass spectrum measurements as separate x-y mappings; and (I) an imaging device for providing images of the x-y mappings.
Owner:GEORGE WASHINGTON UNIVERSITY

Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro / nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and / or nanofabrication with carbon nanotubes / fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes / fibers at the catalyst-deposited tips, (3) Control of carbon nanotube / fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.
Owner:UT BATTELLE LLC +1

Integrated displacement sensors for probe microscopy and force spectroscopy

In accordance with an embodiment of the invention, there is a force sensor for a probe based instrument. The force sensor can comprise a detection surface and a flexible mechanical structure disposed a first distance above the detection surface so as to form a gap between the flexible mechanical structure and the detection surface, wherein the flexible mechanical structure is configured to deflect upon exposure to an external force, thereby changing the first distance.
Owner:GEORGIA TECH RES CORP

Optical signal processing with modelocked lasers

The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. In some embodiments an effective CDSL is constructed with only one laser. At least one embodiment includes a coherent scanning laser system (CSL) for generating pulse pairs with a time varying time delay. A CDSL, effective CDSL, or CSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and / or THz imaging.
Owner:IMRA AMERICA

Pathogen Detection Using Coherent Anti-Stokes Raman Scattering Microscopy

The invention provides a system and method for automatic real-time monitoring for the presence of a pathogen in water using coherent anti-stokes Raman scattering (CARS) microscopy. Water sample trapped in a trapping medium is provided to a CARS imager. CARS images are provided to a processor for automatic analyzing for the presence of image artifacts having pre-determined features characteristic to the pathogen. If a match is found, a CARS spectrum is taken and compared to a stored library of reference pathogen-specific spectra for pathogen identification. The system enables automatic pathogen detection in flowing water in real time.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Optical scanning and imaging systems based on dual pulsed laser systems

The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference δfr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and / or THz imaging.
Owner:IMRA AMERICA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products