Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2036 results about "Microscopy" patented technology

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

Dendritic Polymers With Enhanced Amplification and Interior Functionality

Dendritic polymers with enhanced amplification and interior functionality are disclosed. These dendritic polymers are made by use of fast, reactive ring-opening chemistry (or other fast reactions) combined with the use of branch cell reagents in a controlled way to rapidly and precisely build dendritic structures, generation by generation, with cleaner chemistry, often single products, lower excesses of reagents, lower levels of dilution, higher capacity method, more easily scaled to commercial dimensions, new ranges of materials, and lower cost. The dendritic compositions prepared have novel internal functionality, greater stability (e.g., thermal stability and less or no reverse Michael's reaction), and reach encapsulation surface densities at lower generations. Unexpectedly, these reactions of polyfunctional branch cell reagents with polyfunctional cores do not create cross-linked materials. Such dendritic polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper, proton scavengers, polymers, nanoscale monomers, calibration standards for electron microscopy, making size selective membranes, and agents for modifying viscosity in aqueous formulations such as paint. When these dendritic polymers have a carried material associated with their surface and/or interior, then these dendritic polymers have additional properties for carrying materials due to the unique characteristics of the dendritic polymer, such as for drug delivery, transfection, and diagnostics.
Owner:DENDRITIC NANO TECH INC

Method and apparatus for three-dimensional microscopy with enhanced resolution

A method and apparatus for three dimensional optical microscopy is disclosed which employs dual opposing objective lenses about a sample and extended incoherent illumination to provide enhanced depth or Z.Iadd.-.Iaddend.direction resolution. In a first embodiment, observed light from both objective lenses are brought into coincidence on an image detector and caused to interfere thereon by optical path length adjustment. In a second embodiment, illuminating light from an extended incoherent light source is detected to the sample through both objective lenses and caused to interfere with a section of the sample by adjusting optical path lengths. Observed light from one objective lens is then recorded. In a third embodiment, which combines the first two embodiments, illuminating light from an extended incoherent light source is directed to the sample through both objective lenses and caused to interfere within a section of the sample by adjusting optical path lengths. The observed light from both lenses is caused to interfere on the image detector by the same optical path length adjustment. .Iadd.In a fourth embodiment of the invention, further spatial structure is introduced into the illumination light. Computational processing is used to enhance lateral or XY resolution as well as depth or Z resolution..Iaddend.
Owner:RGT UNIV OF CALIFORNIA

Method and device for photothermal examination of microinhomogeneities

The invention relates to optical microscopy, and more particularly to the methods for photothermal examination of absorbing microheterogeneities using laser radiation. The invention can be widely used in laser technique, industry, and biomedicine to examine transparent objects with absorbing submicron fragments, including detection of local impurities and defects in super-pure optical and semiconducting materials and non-destructive diagnostics of biological samples on cellular and subcellular levels.The object of the present invention is to increase sensitivity, spatial resolution and informative worth when examining local absorbing heterogeneities in transparent objects, as well as to detect the size of said heterogeneities even if said size is smaller than the radiation wavelength used.Said object is achieved by the pump beam irradiation of a sample, the duration of said irradiation not being longer than the characteristic time of cooling of the microheterogeneity observed. A relatively vast surface of the sample is irradiated at once, the size of said surface not being larger than the wavelength of the pump laser used. The refraction index thermal variations, induced by the pump beam in the sample and being the result of absorption, are registered by the parameter change of the probe laser beam. A chosen probe beam diameter should not be smaller than the pump beam diameter. The diffraction-limited phase distribution over the probe laser beam cross-section is transformed to an amplitude image using a phase contrast method. The properties of microheterogeneities are estimated by measuring said amplitude image.
Owner:LAPOTKO TATIANA MS

Monolayer and/or Few-Layer Graphene On Metal or Metal-Coated Substrates

Graphene is a single atomic layer of sp2-bonded C atoms densely packed into a two-dimensional honeycomb crystal lattice. A method of forming structurally perfect and defect-free graphene films comprising individual mono crystalline domains with in-plane lateral dimensions of up to 200 μm or more is presented. This is accomplished by controlling the temperature-dependent solubility of interstitial C of a transition metal substrate having a suitable surface structure. At elevated temperatures, C is incorporated into the bulk at higher concentrations. As the substrate is cooled, a lowering of the interstitial C solubility drives a significant amount of C atoms to the surface where graphene islands nucleate and gradually increase in size with continued cooling. Ru(0001) is selected as a model system and electron microscopy is used to observe graphene growth during cooling from elevated temperatures. With controlled cooling, large arrays of macroscopic single-crystalline graphene domains covering the entire transition metal surface are produced. As the graphene domains coalesce to a complete layer, a second graphene layer is formed, etc. By controlling the interstitial C concentration and the cooling rate, graphene layers with thickness up to 10 atomic layers or more are formed in a controlled, layer-by-layer fashion.
Owner:BROOKHAVEN SCI ASSOCS

Protein Microscope

A system and method for analyzing and imaging a sample containing molecules of interest combines modified MALDI mass spectrometer and SNOM devices and techniques, and includes: (A) an atmospheric-pressure or near-atmospheric-pressure ionization region; (B) a sample holder for holding the sample; (C) a laser for illuminating said sample; (D) a mass spectrometer having at least one evacuated vacuum chamber; (E) an atmospheric pressure interface connecting said ionization region and said mass spectrometer; (F) a scanning near-field optical microscopy instrument comprising a near-field probe for scanning the sample; a vacuum capillary nozzle for sucking in particles which are desorbed by said laser, the nozzle being connected to an inlet orifice of said atmospheric pressure interface; a scanner platform connected to the sample holder, the platform being movable to a distance within a near-field distance of the probe; and a controller for maintaining distance information about a current distance between said probe and said sample; (G) a recording device for recording topography and mass spectrum measurements made during scanning of the sample with the near-field probe; (H) a plotting device for plotting said topography and mass spectrum measurements as separate x-y mappings; and (I) an imaging device for providing images of the x-y mappings.
Owner:GEORGE WASHINGTON UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products