Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1798 results about "Metrology" patented technology

Metrology is the science of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in France, when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention. This has evolved into the International System of Units (SI) as a result of a resolution at the 11th Conference Generale des Poids et Mesures (CGPM) in 1960.

Integrated metrology systems and information and control apparatus for interaction with integrated metrology systems

A system is disposed at a location of a utility commodity subscriber for informing the subscriber of utility commodity cost and usage and for controlling utility commodity usage. The system includes one or more utility meters, an information and control apparatus, a first data communication link, and a second data communication link. The one or more meters measure usage of one or more utility commodity and for generating one or more usage signals including a measurement of the subscriber's usage of the one or more utility commodities. The information and control apparatus includes a microprocessor, a memory, a clock, and a user interface, for inputting and outputting information. The first data communication link is between the one or more utility meters and the information and control apparatus and provides the one or more usage signals to said information and control apparatus for storage in the memory. The second data communication link is between the information and control apparatus and one or more central locations associated with the one or more utility commodity. The second communication link also provides rate information related to usage of the one or more utility commodity from the one or more central location to the information and control apparatus and provides utility commodity usage data from the information and control apparatus to the one or more central location. The microprocessor computes an accumulated cost of one or more utility commodity for a predetermined period of time according to the clock, the one or more usage signal, and the rate information. Information related to the accumulated cost is provided to the user interface for output to the subscriber.
Owner:ENERGYCITE INC

Wave front sensing method and apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Wave Front Sensing Method and Apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products