Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38477results about How to "Accurate measurement" patented technology

Actively controlled rotary steerable system and method for drilling wells

An actively controlled rotary steerable drilling system for directional drilling of wells having a tool collar rotated by a drill string during well drilling. A bit shaft has an upper portion within the tool collar and a lower end extending from the collar and supporting a drill bit. The bit shaft is omni-directionally pivotally supported intermediate its upper and lower ends by a universal joint within the collar and is rotatably driven by the collar. To achieve controlled steering of the rotating drill bit, orientation of the bit shaft relative to the tool collar is sensed and the bit shaft is maintained geostationary and selectively axially inclined relative to the tool collar during drill string rotation by rotating it about the universal joint by an offsetting mandrel that is rotated counter to collar rotation and at the same frequency of rotation. An electric motor provides rotation to the offsetting mandrel with respect to the tool collar and is servo-controlled by signal input from position sensing elements such as magnetometers, gyroscopic sensors, and accelerometers which provide real time position signals to the motor control. In addition, when necessary, a brake is used to maintain the offsetting mandrel and the bit shaft axis geostationary. Alternatively, a turbine is connected to the offsetting mandrel to provide rotation to the offsetting mandrel with respect to the tool collar and a brake is used to servo-control the turbine by signal input from position sensors.
Owner:SCHLUMBERGER TECH CORP

Combined lancet and electrochemical analyte-testing apparatus

InactiveUS20020130042A1Easy to takeReduces and eliminates disposal issueImmobilised enzymesBioreactor/fermenter combinationsAnalyteDisplay device
An apparatus for detection and quantitation of an electrochemically-detect- able analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid. In one version, the lancet moves from a initial position to a piercing position in which skin of the user is pierced and optionally back to a retracted position. The electrochemical sensor is disposed such that the absorptive member takes up a sample from the pierced skin of the user when it is pierced by the lancet without movement of the apparatus. In an alternative version, the lancet is a hollow cannula through which blood or interstitial fluid is transported from the puncture site to an absorbent portion of the electrochemical sensor. In either version, the apparatus provides single-step operation in which sample acquisition and analysis occur as a result of the single action of pressing the apparatus against the users skin.
Owner:LIFESCAN IP HLDG LLC

Method for wide range gas flow system with real time flow measurement and correction

A gas delivery system accurately measures and optionally regulates mass flow rate in real time. A fluid conduit connects an inlet valve, calibration volume, flow restrictor, and outlet valve in series. Pressure and temperature sensors are coupled to the calibration volume. One or more pressure sensors may be attached across the flow restrictor. Alternatively, an absolute pressure sensor may be attached upstream of the flow restrictor. One embodiment of differential pressure sensors comprises a floating reference differential pressure sensor, including a first transducer attached to the fluid conduit upstream of the flow restrictor and a second transducer attached to the conduit downstream of the flow restrictor. In this embodiment, each transducer receives a reference pressure from a reference source, and optionally, after the calibration volume is charged, the floating reference differential pressure transducers are calibrated. When gas flow is initiated, differential and/or absolute pressure measurements are repeatedly taken, and a measured mass flow rate calculated thereon. Gas flow is adjusted until the measured mass flow rate reaches a target mass flow. Using the temperature/pressure sensors at the calibration volume, repeated calculations of actual flow rate are made to uncover any discrepancy between actual and measured mass flow rates. Whenever a discrepancy is found, the manner of calculating measured mass flow is conditioned to account for the discrepancy; thus, the measured mass flow rate more accurately represents the actual mass flow rate thereby providing an actual mass flow rate more accurately achieving the target mass flow rate.
Owner:CYBER INSTR TECH LLC AN ARIZONA LIMITED LIABILITY +1

Sensor having electrode for determining the rate of flow of a fluid

Sensors that are capable measuring the rate of flow of a fluid that passes over the electrodes of the sensor. In these sensors, an electrode, designated the flow rate-determining electrode, is used in conjunction with the conventional electrodes, e.g., the working electrode, the reference electrode, and the counter electrode, to determine the rate of flow of the fluid. In one aspect, this invention provides a sensor for measuring the concentration of an analyte in a sample of fluid when the sample flows continuously over the electrodes of the sensor, especially when the rate of flow of the sample is relatively low. In another aspect, this invention provides a method for measuring the concentration of an analyte in a sample of fluid, wherein the rate of flow of the sample varies during the period of time that the sensor is in place. In a preferred embodiment, the sensor employs four electrodes, namely, a working electrode, a reference electrode, a counter electrode, and a flow rate-determining electrode. Alternatively, a single electrode that performs both the function of the reference electrode and the function of the counter electrode can replace the reference electrode and the counter electrode. In addition, a dummy electrode or a blank electrode can be used to compensate for interference from electrochemically active species. The reagent(s) specific to the analyte of interest is required to be deposited on the working electrode.
Owner:ABBOTT LAB INC

Method and apparatus for measuring stream availability, quality and performance

A streaming measurement agent designed to experience, measure, and report on a media stream as an actual end user would experience the stream. Preferably, agent resides transparently within a streaming media player itself so that it can monitor stream packet flows within the player as the measured streams are being played. In an illustrative embodiment, the agent comprises a performance monitoring module (PMM), which is software that resides in an interface between an existing core module and a renderer of a media player. The agent PMM intercepts each useful packet as it goes from the core to the renderer and, as a result, it is able to compute quality metrics about the playback. The agent functions “transparently” to the media player by presenting the core with an application programming interface (API) that emulates the API that the renderer normally presents to the core. Thus, when the core believes it is calling the renderer, it is actually calling the agent PMM, which can then receive all the packets from the core and process them. After computing relevant performance metrics using the packets it receives, the agent PMM calls the renderer. A set of performance agents can be managed by a service provider to enable a content provider to determine how a stream is perceived by end users.
Owner:AKAMAI TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products