Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

17409 results about "Motor control" patented technology

Motor control is the regulation of movement in organisms that possess a nervous system. Motor control includes reflexes as well as directed movement. To control movement, the nervous system must integrate multimodal sensory information (both from the external world as well as proprioception) and elicit the necessary signals to recruit muscles to carry out a goal. This pathway spans many disciplines, including multisensory integration, signal processing, coordination, biomechanics, and cognition. Successful motor control is crucial to interacting with the world to carry out goals as well as to regulate balance and stability.

Actively controlled rotary steerable system and method for drilling wells

An actively controlled rotary steerable drilling system for directional drilling of wells having a tool collar rotated by a drill string during well drilling. A bit shaft has an upper portion within the tool collar and a lower end extending from the collar and supporting a drill bit. The bit shaft is omni-directionally pivotally supported intermediate its upper and lower ends by a universal joint within the collar and is rotatably driven by the collar. To achieve controlled steering of the rotating drill bit, orientation of the bit shaft relative to the tool collar is sensed and the bit shaft is maintained geostationary and selectively axially inclined relative to the tool collar during drill string rotation by rotating it about the universal joint by an offsetting mandrel that is rotated counter to collar rotation and at the same frequency of rotation. An electric motor provides rotation to the offsetting mandrel with respect to the tool collar and is servo-controlled by signal input from position sensing elements such as magnetometers, gyroscopic sensors, and accelerometers which provide real time position signals to the motor control. In addition, when necessary, a brake is used to maintain the offsetting mandrel and the bit shaft axis geostationary. Alternatively, a turbine is connected to the offsetting mandrel to provide rotation to the offsetting mandrel with respect to the tool collar and a brake is used to servo-control the turbine by signal input from position sensors.
Owner:SCHLUMBERGER TECH CORP

Secure wireless leak detection system

Supervised wireless leak detection system, having a leak detection sensor unit, capable of transmitting a uniquely coded signal in response to a detected leak, a supervised wireless valve control transceiver unit having a receiver, capable of receiving said uniquely coded signal, and a transmitter for feeding the uniquely coded signal within the system, a valve shut-off mechanism in communication with said valve control transceiver unit said valve shut-off mechanism having a motor attached to a valve, said motor creating a rotation pulse used to close and open said valve, and a processor having an electronic circuitry containing sensor(s), detecting said motor rotation pulse count during a motorized valve closure or open process. Said processor functions in a setup process to memorize (learn) said motor rotation pulse count, required, to close and or to open the valve. Wherein said processor upon receipt of said uniquely coded signal in response to a detected leak, applies power to the motor to close the valve, the motor controlled to stop turning the valve in response to a processor received motor rotation pulse count number, substantially equal to a previously stored number needed to close or open said valve. A digital, voice, or SMS text message phone dialer is add to dispatch the detected leak signals, and notify monitoring personnel supervised system operation, end provide user access to turn on or off a valve(s) from a remote location(s).
Owner:RUGGIERI MONICA L +1

Modular multi-axis motion control and driving system and method thereof

A modular multi-axis motion control and driving system is developed by using advanced Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA) technologies. A modular multi-axis motion control and driving system comprises: a control board comprising a DSP and Flash ROM connected to each other, for performing position control and current control of said system; a plurality of driver boards, connected to the control board through a bus, each of which comprise a FPGA device and a plurality of MOSFET power amplifier, for driving a plurality of servo motors; a computer, connected to said control board, for providing graphic user interface, through which motor setting, current and position loop tuning and diagnostic can be performed; Wherein, a control program, system parameters and FPGA configuration file are stored in said Flash ROM, when the system power is on, the DSP automatically executes an loader firmware to transfer the control program from said Flash ROM to the memory of DSP for execution, then the DSP reads the FPGA configuration file from the Flash ROM and configure the FPGA in the driver board, after that, the control program runs into a circulation loop to do system diagnose, network service and check command queue, while the current and position controls are implemented in an interrupt service.
Owner:DYNACITY TECH HK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products