Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8947 results about "MOSFET" patented technology

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS), is a type of field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. It has a covered gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The MOSFET was invented by Egyptian engineer Mohamed M. Atalla and Korean engineer Dawon Kahng at Bell Labs in November 1959. It is the basic building block of modern electronics, and the most widely manufactured device in history, with an estimated total of 13 sextillion (1.3 × 10²²) MOSFETs manufactured between 1960 and 2018.

Semiconductor device and method of fabricating the same

A semiconductor device improves the electron mobility in the n-channel MOSFET and reduces the bend or warp of the semiconductor substrate or wafer. The fist nitride layer having a tensile stress is formed on the substrate to cover the n-channel MOSFET. The tensile stress of the first nitride layer serves to relax a compressive stress existing in the channel region. The second nitride layer having an actual compressive stress is formed on the substrate to cover the p-channel MOSFET. The first and second nitride layers serve to decrease bend or warp of the substrate. Preferably, the first nitride layer is a nitride layer of Si formed by a LPCVD process, and the second nitride layer is a nitride layer of Si formed by a PECVD process.
Owner:NEC ELECTRONICS CORP

Enhanced Segmented Channel MOS Transistor with Multi Layer Regions

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping, “wrapped” gates, epitaxially grown conductive regions, epitaxially grown high mobility semiconductor materials (e.g. silicon-germanium, germanium, gallium arsenide, etc.), high-permittivity ridge isolation material, and narrowed base regions can be used in conjunction with the segmented channel regions to further enhance device performance.
Owner:SYNOPSYS INC

Phosphorus Containing Si Epitaxial Layers in N-Type Source/Drain Junctions

Methods for formation of epitaxial layers containing n-doped silicon are disclosed. Specific embodiments pertain to the formation and treatment of epitaxial layers in semiconductor devices, for example, Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices. In specific embodiments, the formation of the n-doped epitaxial layer involves exposing a substrate in a process chamber to deposition gases including a silicon source, a carbon source and an n-dopant source. An epitaxial layer may have considerable tensile stress which may be created in a significant amount by a high concentration of n-dopant. A layer having n-dopant may also have substitutional carbon. Phosphorus as an n-dopant with a high concentration is provided. A substrate having an epitaxial layer with a high level of n-dopant is also disclosed.
Owner:APPLIED MATERIALS INC

Sequential Selective Epitaxial Growth

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. A multi step epitaxial process can be used to extend the ridges with different dopant types, high mobility semiconductor, and or advanced multi-layer strutures. For CMOS integrated circuits a capping layer is formed over the a first region. Epitaxial layers are formed in a second region. Then the capping layer is removed from the first region and a capping layer is formed over the second region. Epitaxial layers can than be formed in the first region.
Owner:SYNOPSYS INC

Method of IC production using corrugated substrate

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
Owner:SYNOPSYS INC

Enhanced Segmented Channel MOS Transistor with High-Permittivity Dielectric Isolation Material

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping, “wrapped” gates, epitaxially grown conductive regions, epitaxially grown high mobility semiconductor materials (e.g. silicon-germanium, germanium, gallium arsenide, etc.), high-permittivity ridge isolation material, and narrowed base regions can be used in conjunction with the segmented channel regions to further enhance device performance.
Owner:SYNOPSYS INC

Enhanced segmented channel MOS transistor with high-permittivity dielectric isolation material

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping, “wrapped” gates, epitaxially grown conductive regions, epitaxially grown high mobility semiconductor materials (e.g. silicon-germanium, germanium, gallium arsenide, etc.), high-permittivity ridge isolation material, and narrowed base regions can be used in conjunction with the segmented channel regions to further enhance device performance.
Owner:SYNOPSYS INC

Integrated Circuit On Corrugated Substrate

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
Owner:SYNOPSYS INC

Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors

In accordance with a preferred embodiment of the present invention, a silicon-on-insulator (SOI) chip includes a silicon layer of a predetermined thickness overlying an insulator layer. A multiple-gate fully-depleted SOI MOSFET including a strained channel region is formed on a first portion of the silicon layer. A planar SOI MOSFET including a strained channel region formed on another portion of the silicon layer. For example, the planar SOI MOSFET can be a planar fully-depleted SOI (FD-SOI) MOSFET or the planar SOI MOSFET can be a planar partially-depleted SOI (PD-SOI) MOSFET.
Owner:TAIWAN SEMICON MFG CO LTD

Symmetrically and asymmetrically stacked transistor group RF switch

A silicon-on-insulator (SOI) RF switch adapted for improved power handling capability using a reduced number of transistors is described. In one embodiment, an RF switch includes pairs of switching and shunting stacked transistor groupings to selectively couple RF signals between a plurality of input / output nodes and a common RF node. The switching and shunting stacked transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. In one embodiment, the transistor groupings are “symmetrically” stacked in the RF switch (i.e., the transistor groupings all comprise an identical number of transistors). In another embodiment, the transistor groupings are “asymmetrically” stacked in the RF switch (i.e., at least one transistor grouping comprises a number of transistors that is unequal to the number of transistors comprising at least one other transistor grouping). The stacked configuration of the transistor groupings enable the RF switch to withstand RF signals of varying and increased power levels. The asymmetrically stacked transistor grouping RF switch facilitates area-efficient implementation of the RF switch in an integrated circuit. Maximum input and output signal power levels can be withstood using a reduced number of stacked transistors.
Owner:PSEMI CORP

Circuitry for supplying electrical power to loads

A power supply, comprising a boost converter which provides voltage to a first load, and a flyback converter which provides voltage to a second load and which utilizes an inductive element of the boost converter as a primary winding of a transformer of the flyback converter. Also, a power supply comprising a MOSFET which is disposed between solid state elements and a second reference potential and which controls current flowing through the solid state elements. Also, a circuit comprising a transformer, a first circuit portion comprising the primary winding of the transformer and a second circuit portion comprising the secondary winding of the transformer. Also, a power supply comprising means for using a common transformer for providing a boost converter and a flyback converter. Also, a power supply comprising a transformer, means for providing a boost converter utilizing the transformer, and means for providing a flyback converter utilizing the transformer.
Owner:IDEAL IND LIGHTING LLC

Non-volatile resistance switching memories and methods of making same

An integrated circuit memory cell including: a semiconductor having a first active area, a second active area, and a channel between the active areas; and a layer of a variable resistance material (VRM) directly above the channel. In one embodiment, there is a first conductive layer between the VRM and the channel and a second conductive layer directly above the VRM layer. The VRM preferably is a correlated electron material (CEM). The memory cell comprises a FET, such as a JFET or a MESFET. In another embodiment, there is a layer of an insulating material between the VRM and the channel. In this case, the memory cell may include a MOSFET structure.
Owner:SYMETRIX MEMORY

Method to fabricate a strained Si CMOS structure using selective epitaxial deposition of Si after device isolation formation

A strained Si CMOS structure is formed by steps which include forming a relaxed SiGe layer on a surface of a substrate; forming isolation regions and well implant regions in said relaxed SiGe layer; and forming a strained Si layer on said relaxed SiGe layer. These processing steps may be used in conjunction with conventional gate processing steps in forming a strained MOSFET structure.
Owner:SAMSUNG ELECTRONICS CO LTD

Two-sided semiconductor-on-insulator structures and methods of manufacturing the same

Both sides of a semiconductor-on-insulator substrate are utilized to form MOSFET structures. After forming first type devices on a first semiconductor layer, a handle wafer is bonded to the top of a first middle-of-line dielectric layer. A lower portion of a carrier substrate is then removed to expose a second semiconductor layer and to form second type devices thereupon. Conductive vias may be formed through the buried insulator layer to electrically connect the first type devices and the second type devices. Use of block masks is minimized since each side of the buried insulator has only one type of devices. Two levels of devices are present in the structure and boundary areas between different types of devices are reduced or eliminated, thereby increasing packing density of devices. The same alignment marks may be used to align the wafer either front side up or back side up.
Owner:TAIWAN SEMICON MFG CO LTD

Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink

A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
Owner:PSEMI CORP

HIGH-k/METAL GATE MOSFET WITH REDUCED PARASITIC CAPACITANCE

The present invention provides a high-k gate dielectric / metal gate MOSFET that has a reduced parasitic capacitance. The inventive structure includes at least one metal oxide semiconductor field effect transistor (MOSFET) 100 located on a surface of a semiconductor substrate 12. The least one MOSFET 100 includes a gate stack including, from bottom to top, a high-k gate dielectric 28 and a metal-containing gate conductor 30. The metal-containing gate conductor 30 has gate corners 31 located at a base segment of the metal-containing gate conductor. Moreover, the metal-containing gate conductor 30 has vertically sidewalls 102A and 102B devoid of the high-k gate dielectric 28 except at the gate corners 31. A gate dielectric 18 laterally abuts the high-k gate dielectric 28 present at the gate corners 31 and a gate spacer 36 laterally abuts the metal-containing gate conductor 30. The gate spacer 36 is located upon an upper surface of both the gate dielectric 18 and the high-k gate dielectric that is present at the gate corners 31.
Owner:TESSERA INC

Method and structure for a 1T-RAM bit cell and macro

A one transistor (1T-RAM) bit cell and method for manufacture are provided. A metal-insulator-metal (MIM) capacitor structure and method of manufacturing it in an integrated process that includes a finFET transistor for the 1T-RAM bit cell is provided. In some embodiments, the finFET transistor and MIM capacitor are formed in a memory region and an asymmetric processing method is disclosed, which allows planar MOSFET transistors to be formed in another region of a single device. In some embodiments, the 1T-RAM cell and additional transistors may be combined to form a macro cell, multiple macro cells may form an integrated circuit. The MIM capacitors may include nanoparticles or nanostructures to increase the effective capacitance. The finFET transistors may be formed over an insulator. The MIM capacitors may be formed in interlevel insulator layers above the substrate. The process provided to manufacture the structure may advantageously use conventional photomasks.
Owner:TAIWAN SEMICON MFG CO LTD

All-around MOSFET gate and methods of manufacture thereof

Metal oxide field effect transistor having a channel and a gate that surrounds the channel on four sides. Method of manufacture of the transistor includes processing the back of a silicon wafer to form a buried gate that is electrically connected to the gate of a conventional field effect transistor to form an all-around structure.
Owner:MINDSPEED TECH INC

Dimmer circuit for LED

The AC output from a source is rectified and applied to a resistor / Zener diode circuit connection which determines the magnitude of the rectified voltage applied via a circuit to a first MOSFET device. The inverted output of the first MOSFET device is applied to the gate electrode of a second MOSFET device in a manner such that the second MOSFET device is ON even when the AC output passes through zero. The output of the second MOSFET device is connected to a resistor which determines the magnitude of the load applied to the dimmer.
Owner:LEDTRONICS

HIGH-k/METAL GATE MOSFET WITH REDUCED PARASITIC CAPACITANCE

The present invention provides a high-k gate dielectric / metal gate MOSFET that has a reduced parasitic capacitance. The inventive structure includes at least one metal oxide semiconductor field effect transistor (MOSFET) 100 located on a surface of a semiconductor substrate 12. The least one MOSFET 100 includes a gate stack including, from bottom to top, a high-k gate dielectric 28 and a metal-containing gate conductor 30. The metal-containing gate conductor 30 has gate corners 31 located at a base segment of the metal-containing gate conductor. Moreover, the metal-containing gate conductor 30 has vertically sidewalls 102A and 102B devoid of the high-k gate dielectric 28 except at the gate corners 31. A gate dielectric 18 laterally abuts the high-k gate dielectric 28 present at the gate corners 31 and a gate spacer 36 laterally abuts the metal-containing gate conductor 30. The gate spacer 36 is located upon an upper surface of both the gate dielectric 18 and the high-k gate dielectric that is present at the gate corners 31.
Owner:TESSERA INC

Methods to fabricate MOSFET devices using selective deposition process

In one embodiment, a method for fabricating a silicon-based device on a substrate surface is provided which includes depositing a first silicon-containing layer by exposing the substrate surface to a first process gas comprising Cl2SiH2, a germanium source, a first etchant and a carrier gas and depositing a second silicon-containing layer by exposing the first silicon-containing layer to a second process gas comprising SiH4 and a second etchant. In another embodiment, a method for depositing a silicon-containing material on a substrate surface is provided which includes depositing a first silicon-containing layer on the substrate surface with a first germanium concentration of about 15 at % or more. The method further provides depositing on the first silicon-containing layer a second silicon-containing layer wherein a second germanium concentration of about 15 at % or less, exposing the substrate surface to air to form a native oxide layer, removing the native oxide layer to expose the second silicon-containing layer, and depositing a third silicon-containing layer on the second silicon-containing layer. In another embodiment, a method for depositing a silicon-containing material on a substrate surface is provided which includes depositing epitaxially a first silicon-containing layer on the substrate surface with a first lattice strain, and depositing epitaxially on the first silicon-containing layer a second silicon-containing layer with a second lattice strain greater than the first lattice strain.
Owner:APPLIED MATERIALS INC

High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture

A semiconductor device and method of manufacturing a semiconductor device. The semiconductor device includes channels for a pFET and an nFET. A SiGe layer is selectively grown in the source and drain regions of the pFET channel and a Si:C layer is selectively grown in source and drain regions of the nFET channel. The SiGe and Si:C layer match a lattice network of the underlying Si layer to create a stress component. In one implementation, this causes a compressive component in the pFET channel and a tensile component in the nFET channel.
Owner:AURIGA INNOVATIONS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products