Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

146results about How to "Improve area efficiency" patented technology

Symmetrically and asymmetrically stacked transistor group RF switch

A silicon-on-insulator (SOI) RF switch adapted for improved power handling capability using a reduced number of transistors is described. In one embodiment, an RF switch includes pairs of switching and shunting stacked transistor groupings to selectively couple RF signals between a plurality of input / output nodes and a common RF node. The switching and shunting stacked transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. In one embodiment, the transistor groupings are “symmetrically” stacked in the RF switch (i.e., the transistor groupings all comprise an identical number of transistors). In another embodiment, the transistor groupings are “asymmetrically” stacked in the RF switch (i.e., at least one transistor grouping comprises a number of transistors that is unequal to the number of transistors comprising at least one other transistor grouping). The stacked configuration of the transistor groupings enable the RF switch to withstand RF signals of varying and increased power levels. The asymmetrically stacked transistor grouping RF switch facilitates area-efficient implementation of the RF switch in an integrated circuit. Maximum input and output signal power levels can be withstood using a reduced number of stacked transistors.
Owner:PSEMI CORP

Symmetrically and asymmetrically stacked transistor grouping RF switch

A silicon-on-insulator (SOI) RF switch adapted for improved power handling capability using a reduced number of transistors is described. In one embodiment, an RF switch includes pairs of switching and shunting stacked transistor groupings to selectively couple RF signals between a plurality of input / output nodes and a common RF node. The switching and shunting stacked transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. In one embodiment, the transistor groupings are “symmetrically” stacked in the RF switch (i.e., the transistor groupings all comprise an identical number of transistors). In another embodiment, the transistor groupings are “asymmetrically” stacked in the RF switch (i.e., at least one transistor grouping comprises a number of transistors that is unequal to the number of transistors comprising at least one other transistor grouping). The stacked configuration of the transistor groupings enable the RF switch to withstand RF signals of varying and increased power levels. The asymmetrically stacked transistor grouping RF switch facilitates area-efficient implementation of the RF switch in an integrated circuit. Maximum input and output signal power levels can be withstood using a reduced number of stacked transistors.
Owner:PSEMI CORP

Methods, circuits, architectures, software and systems for determining a data transmission error and/or checking or confirming such error determinations

Methods, circuits, architectures, and systems for error detection in transmitted data. The method generally includes the steps of (a) performing an error checking calculation on the transmitted data and appended error checking code; (b) determining the calculated error checking code state; and (c) if it has a predetermined state, indicating that there is no error in the transmitted data. The circuitry generally comprises (1) an error checking code calculation circuit configured to calculate error checking code on the transmitted data and the appended error checking code; (2) a vector selector configured to select one of a plurality of error checking vectors; and (3) a logic circuit configured to determine the calculated error checking code state and, if it has a predetermined state, indicate that there is no error in the transmitted data. The software generally includes a set of instructions configured to implement or carry out the present method. The architectures and/or systems generally include those that embody one or more of the inventive concepts disclosed herein. In the present invention, an error checking calculation is performed on error checking code transmitted with the data. If the transmitted data and error checking code are error-free, the error checking calculation gives a result having a known and/or predetermined state. This technique enables one to confirm or determine that the data transmission was error-free without use of or need for a wide, complicated comparator, thereby reducing the chip area dedicated to error detection, increasing the utilization efficiency of the circuitry on the chip, and reducing power consumption.
Owner:MARVELL ISRAEL MISL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products