Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1173 results about "Non symmetric" patented technology

So a non symmetric matrix is one which when transposed gives a different matrix than the one you started with. The identity matrix is symmetric whereas if you add just one more 1 to any one of its non diagonal elements then it becomes non symmetric.

System and method for sharing keys across authenticators

A system, apparatus, method, and machine readable medium are described for sharing authentication data. For example, one embodiment of a method comprises: generating and storing a persistent group identification code (Group-ID) for a group of authenticators sharing a common set of authorization (Uauth) keys, an initial Group-ID to be generated on a first use of a first authenticator and/or following a factory reset of the first authenticator generating and storing an individual asymmetric wrapping key encryption key (WKEK) on a first use of the first authenticator and/or following each factory reset of the first authenticator; generating and storing a symmetric wrapping key (WK), the wrapping key to be generated on a first use of the first authenticator and/or following each factory reset of the first authenticator; generating a join-block using an authenticator identification code for the first authenticator and the WKEK, the join-block usable to join an existing authenticator group, the join block to be sent to a second authenticator; verifying the join-block at the second authenticator and generating a join response block responsive to user approval, the join response block generated by encrypting the WK and Group-ID using the WKEK, the join response block to be transmitted to the first authenticator; and decrypting the join response block and storing the WK and Group-ID.

Method and system for asymmetric satellite communications for local area networks

A method and system for providing high-speed, satellite-based information delivery is described. Improved communication channel efficiency is accomplished by employing an asymmetric data flow. The high bandwidth channel capacity of digital satellite systems is used for the download of large volumes of data. While relatively low speed communication channels are used for upstream data requests. The use of separate channels for upstream data and downloaded data provides an increased efficiency of use for typical internet and other electronic information service subscribers. A typical user in such systems generally makes relatively short information requests. These requests are then followed by large amounts of information being transferred to the user's computer in response to the request. The volume of data being downloaded often causes a capacity overload of typically used land lines. This invention solves this problem, without becoming prohibitively expensive, by employing digital satellite dish receivers to receive the high volume of downloaded data and using the relatively low speed communication channels low volume upstream requests. Moreover, this invention is designed to interface with all common communication devices as well as being designed to operate on and with all common computing platforms.

Devices with adjustable dual-polarity trigger- and holding-voltage/current for high level of electrostatic discharge protection in sub-micron mixed signal CMOS/BiCMOS integrated circuits

InactiveUS20070007545A1Impaired immunityHigh protection levelTransistorThyristorNon symmetricTransmission-line pulse
Symmetrical/asymmetrical bidirectional S-shaped I-V characteristics with trigger voltages ranging from 10 V to over 40 V and relatively high holding current are obtained for advanced sub-micron silicided CMOS (Complementary Metal Oxide Semiconductor)/BiCMOS (Bipolar CMOS) technologies by custom implementation of P1-N2-P2-N1//N1-P3-N3-P1 lateral structures with embedded ballast resistance 58, 58A, 56, 56A and periphery guard-ring isolation 88-86. The bidirectional protection devices render a high level of electrostatic discharge (ESD) immunity for advanced CMOS/BiCMOS processes with no latchup problems. Novel design-adapted multifinger 354/interdigitated 336 layout schemes of the ESD protection cells allow for scaling-up the ESD performance of the protection structure and custom integration, while the I-V characteristics 480 are adjustable to the operating conditions of the integrated circuit (IC). The ESD protection cells are tested using the TLP (Transmission Line Pulse) technique, and ESD standards including HBM (Human Body Model), MM (Machine Model), and IEC (International Electrotechnical Commission) IEC 1000-4-2 standard for ESD immunity. ESD protection performance is demonstrated also at high temperature (140° C.). The unique high ratio of dual-polarity ESD protection level per unit area, allows for integration of fast-response and compact protection cells optimized for the current tendency of the semiconductor industry toward low cost and high density-oriented IC design. Symmetric/asymmetric dual polarity ESD protection performance is demonstrated for over 15 kV HBM, 2 kV MM, and 16.5 kV IEC for sub-micron technology.

Method for preparing electrodes of super capacitor based on nickel foam and products thereof

The invention discloses a method for preparing electrodes of a dissymmetric super capacitor based on nickel foam. The method comprises the steps: washing the nickel foam, soaking the nickel foam into a graphene oxide aqueous solution to obtain nickel foam in which graphene oxide deposits, serving the nickel foam in which the graphene oxide deposits as precursor materials, and respectively adopting a three-electrode method for preparaing a positive electrode and a negative electrode of the dissymmetric super capacitor, wherein the positive electrode is composed of composite materials of graphene, a carbon nanometer tube and the nickel foam, and the negative electrode is composed of composite materials of graphene, manganese dioxide and the nickel foam. The invention further discloses some other methods for preparing the electrodes of the super capacitor based on the similar principle, and products which correspond to the methods. By means of the methods and the products, respective high-ratio capacitance characteristics of the composite materials are fully played, and energy density of the super capacitor is improved. In addition, usage of various combined reagents can be avoided, and accordingly large-batch industrial production is conducted in a mode of convenient control, low cost and low energy consumption.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products