Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

128232 results about "Gear wheel" patented technology

Thin-type gear motor and muscle force assisting device using thin-type gear motor

In a thin-type gear motor and a muscle force assisting device that uses the thin-type gear motor in which high torque output is achieved, thinness and size and weight reduction are achieved, and further size reduction is achieved by an absolute sensor that is capable of detecting a rotation angle of an output shaft after speed reduction and is situated in a space that is conventionally not used.

Medical drive system for providing motion to at least a portion of a medical apparatus

InactiveUS20080064920A1Improved guidewire (or needle) extensionSurgeryEndoscopesDrive shaftGear wheel
Several medical drive systems each include a drive system assembly adapted to engage and move at least a portion of a medical apparatus. The medical drive system assemblies each are variously described in expressions such as an assembly adapted to engagingly slide onto a catheter, an assembly adapted to surroundingly attach to a catheter, an assembly adapted to engagingly slide onto a working channel entrance of an endoscope wherein the medical apparatus is insertable into the working channel entrance, an assembly including a spur gear and a nut gear wherein the nut gear includes external teeth engaged by the spur gear, an assembly insertable into a working channel of a flexible insertion tube of an endoscope, and / or an assembly including a drive shaft and a nut gear fixedly attached thereto wherein the drive shaft has at least a hollow portion and the medical apparatus is positionable in the hollow portion.

Planetary-gear-type multiple-step transmission for vehicle

A planetary-gear-type multiple-step transmission including a stationary member, an input rotary member, an output rotary member, and first and second transmission units. The first transmission unit transmits a rotary motion from an input rotary member to the second transmission unit through first and second intermediate transmitting paths such that a speed of the rotary motion transmitted through the second intermediate transmitting path is lower than that of the rotary motion transmitted through the first intermediate transmitting path. The second transmission unit constitutes first, second, third, fourth and fifth rotary elements, each of which is provided by at least one of sun gears, carriers and ring gears of three planetary gear sets. The first rotary element is selectively connected to the second intermediate transmitting path, while being selectively connected to the stationary member. The second rotary element is selectively connected to the first intermediate transmitting path. The third rotary element is selectively connected to the first intermediate transmitting path, while being selectively connected to the stationary member. The fourth rotary element is connected to the output rotary member. The fifth rotary element is selectively connected to the second intermediate transmitting path.

Robotic apparatus for minimally invasive surgery

A robotic arm especially suited for laparoscopic surgery, having a torsional joint and a flexural joint forming serially arranged joints is described. The joints provide respective degrees of freedom for the arm, which further receives drive means for such joints. The robotic arm also has transmission means placed between the drive means have and the joints. The transmission means a first and a second assembly of three gear wheels, preferably conical gear wheels, and a train of three additional gear wheels, preferably straight-cut gear wheels, which couple the first and second assembly to form a differential mechanism.

Ducted fan vertical take-off and landing vehicle

A vertical take-off and landing vehicle comprised of a fuselage having a front, a rear, and two lateral sides and a set of four thrusters set to the front, the left, the right, and the rear of said fuselage. The thrusters are either independently powered thrusters or could utilize a single power source. The thrusters, which are ducted fan units capable of providing a vertically upward force to the aircraft, are provided with such redundancy that the aircraft can hover with up to two thrusters inoperative. The thrusters are comprised of a set of two counter rotating propellers both of which creates lift. The two counter rotating propellers cancel out the torque effect normally created by using only one propeller. The Ducted fan units being movable between a first position in which they provide vertical lift and a second position in which they provide horizontal thrust using a set of servos and gears.

Pinion Blade Drive Mechanism for a Laparoscopic Vessel Dissector

A surgical instrument comprises a handle assembly including an actuator mounted for manipulation through an actuation stroke. An elongate shaft extends distally from the handle assembly and defines a longitudinal axis. A reciprocating member extends at least partially through the elongate shaft, and is mounted for longitudinal motion through the elongate shaft in response to manipulation of the actuator through the actuation stroke. A drive mechanism includes a first rotating component coupled to the actuator about a first circumference to induce rotational motion in the first rotating component. A second rotating component is coupled to the first rotating component such that rotational motion in the first rotating component induces rotational motion in the second rotating component. The second rotating component is coupled to the reciprocating member about a second circumference such that rotational motion of the second rotating component induces longitudinal motion in the reciprocating member. The second circumference is greater than the first circumference.

Control wire driving mechanism for use in endoscope

A control wire driving mechanism for use in an endoscope includes a toothed wheel actuated to rotate in a control part of the endoscope. A control wire has a cord-like member helically wound on and secured to the outer peripheral surface of a portion near the proximal end thereof at a pitch corresponding to the pitch of the toothed wheel. The control wire is meshed with the toothed wheel at the portion wound with the cord-like member.

Apparatus for applying tissue sealant

A device and method for applying a fibrinogen-based tissue sealant to seamlessly connect human or animal tissues or organ parts, to seal wounds, stop bleeding and the like by mixing fibrin or fibrinogen with blood clot-promoting coagulation factors are disclosed. The device includes two cylindrical compartments for separately containing the separate fluid components of the sealant preparation, which are simultaneously displaced from the respective compartments by plungers commonly depressable with the same effective strokes. The plungers may be depressed directly or by a common mechanism (e.g., rack and pinion) for accurately controlling the rate of dispensing fluid. The cylindrical compartments are of the same or different cross-sectional area and are arranged either concentrically or side-by-side. The device further includes structure for merging the two fluid components within an outer sleeve housing an inner needle. The sleeve and needle contain conduits for the flow of the two fluid sealant components as they are expressed from the respective compartments. Also disclosed are a convenient device for filling the two compartments, structure for mixing the fluid components, and for atomizing the effluent sealant fluid stream (i.e., spraying).

Automobile rearview mirror with LCD display

An automobile rearview mirror with an LCD display comprises a front panel, a mount, a display unit housed between the front panel and the mount, a front frame, a rear shell, and a mirror. The display unit, the front panel, the mount and the mirror are contained between the rear shell and the mirror. The automobile rearview mirror thereby assembled can be installed at the location of a rearview mirror in an automobile. There are two springs disposed between the mount and the rear shell that provide the force needed to pull down the front panel and the display monitor. The slide motion is further assisted by rail sectors, corresponding slide elements, gear sectors and oil-pressure gear wheels. The automobile rearview mirror is further provided with locking pieces and releases for properly retained the position of the display unit.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products