Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

5247 results about "Robotic arm" patented technology

A robotic arm (not robotic hand) is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion (such as in an articulated robot) or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The terminus of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand.

Multi-purpose robotic operating system and method

A dynamically configurable robotic system and method for performing surgical operations using a plurality of robotic arms remotely controlled by at least one operator console. The system comprises a track system configured for mounting to a patient support table, such that the track system provides a stable operating platform for the robotic arms and for facilitating placement of a proximal end of each of the arms at a selected position about a periphery of the patient support table. the system and method also have a plurality of base stations for operatively coupling each of the robotic arms to the track system, such that each of the base stations include a housing, a first connector for coupling the housing to the track system, the first connector configured for facilitating movement of the housing along the track system while coupled thereto, and a second connector for coupling the housing to the proximal end of at least one of the robotic arms, the second connector configured for providing at least one of power supply, control signalling, and data communication with respect to the coupled robotic arm. The system and method also have a control unit for coupling to at least two of the base stations and configured for dynamically connecting operative remote control between the coupled base stations and a first operator console of the at least one operator console.
Owner:CENT FOR SURGICAL INVENTION & INNOVATION

Multi-purpose robotic operating system and method

A dynamically configurable robotic system and method for performing surgical operations using a plurality of robotic arms remotely controlled by at least one operator console. The system comprises a track system configured for mounting to a patient support table, such that the track system provides a stable operating platform for the robotic arms and for facilitating placement of a proximal end of each of the arms at a selected position about a periphery of the patient support table. the system and method also have a plurality of base stations for operatively coupling each of the robotic arms to the track system, such that each of the base stations include a housing, a first connector for coupling the housing to the track system, the first connector configured for facilitating movement of the housing along the track system while coupled thereto, and a second connector for coupling the housing to the proximal end of at least one of the robotic arms, the second connector configured for providing at least one of power supply, control signalling, and data communication with respect to the coupled robotic arm. The system and method also have a control unit for coupling to at least two of the base stations and configured for dynamically connecting operative remote control between the coupled base stations and a first operator console of the at least one operator console.
Owner:CENT FOR SURGICAL INVENTION & INNOVATION

Method and apparatus for performing minimally invasive surgical procedures

A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The system may also have a robotically controlled endoscope which allows the surgeon to remotely view the surgical site. A cardiac procedure can be performed by making small incisions in the patient's skin and inserting the instruments and endoscope into the patient. The surgeon manipulates the handles and moves the end effectors to perform a cardiac procedure such as a coronary artery bypass graft.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Method and apparatus for determining absolute position of a tip of an elongate object on a plane surface with invariant features

A method and apparatus for determining a pose of an elongate object and an absolute position of its tip while the tip is in contact with a plane surface having invariant features. The surface and features are illuminated with a probe radiation and a scattered portion, e.g., the back-scattered portion, of the probe radiation returning from the plane surface and the feature to the elongate object at an angle τ with respect to an axis of the object is detected. The pose is derived from a response of the scattered portion to the surface and the features and the absolute position of the tip on the surface is obtained from the pose and knowledge about the feature. The probe radiation can be directed from the object to the surface at an angle σ to the axis of the object in the form of a scan beam. The scan beam can be made to follow a scan pattern with the aid of a scanning arrangement with one or more arms and one or more uniaxial or biaxial scanners. Angle τ can also be varied, e.g., with the aid of a separate or the same scanning arrangement as used to direct probe radiation to the surface. The object can be a pointer, a robotic arm, a cane or a jotting implement such as a pen, and the features can be edges, micro-structure or macro-structure belonging to, deposited on or attached to the surface which the tip of the object is contacting.
Owner:ELECTRONICS SCRIPTING PRODS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products