Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

165 results about "Computer-assisted surgery" patented technology

Computer-assisted surgery (CAS) represents a surgical concept and set of methods, that use computer technology for surgical planning, and for guiding or performing surgical interventions. CAS is also known as computer-aided surgery, computer-assisted intervention, image-guided surgery and surgical navigation, but these are terms that are more or less synonymous with CAS. CAS has been a leading factor in the development of robotic surgery.

On-board tool tracking system and methods of computer assisted surgery

A number of improvements are provided relating to computer aided surgery utilizing an on tool tracking system. The various improvements relate generally to both the methods used during computer aided surgery and the devices used during such procedures. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled using the OTT device. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure including the rate of and type of data processed depending upon a CAS mode.
Owner:BOARD OF RGT UNIV OF NEBRASKA

On-board tool tracking system and methods of computer assisted surgery

A number of improvements are provided relating to computer aided surgery utilizing an on tool tracking system. The various improvements relate generally to both the methods used during computer aided surgery and the devices used during such procedures. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled using the OTT device. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure including the rate of and type of data processed depending upon a CAS mode.
Owner:TRAK SURGICAL +1

On-board tool tracking system and methods of computer assisted surgery

A number of improvements are provided relating to computer aided surgery utilizing an on tool tracking system. The various improvements relate generally to both the methods used during computer aided surgery and the devices used during such procedures. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled using the OTT device. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure including the rate of and type of data processed depending upon a CAS mode.
Owner:BOARD OF RGT UNIV OF NEBRASKA +1

Method and system for planning/guiding alterations to a bone

A computer-assisted surgery system for planning / guiding alterations to a bone in surgery, comprises a trackable member adapted to be secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data for at least two degrees of freedom in orientation of the trackable member A positioning block is adapted to be secured to the bone, with at least an orientation of the positioning block being adjustable once the positioning block is secured to the bone to reach a selected orientation at which the positioning block is used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data for at least two degrees of freedom in orientation of the positioning block. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block from the orientation-based data. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone as a function of the orientation reference and of the orientation of the positioning block.
Owner:ORTHOSOFT ULC

Modularity system for computer assisted surgery

A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms / instruments.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Modularity system for computer assisted surgery

A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms / instruments.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Method and apparatus for computer aided surgery

A number of improvements are provided relating to computer aided surgery. The improvement relates to both the methods used during computer aided surgery and the devices used during such procedures. Some of the improvement relate to controlling the selection of which data to display during a procedure and / or how the data is displayed to aid the surgeon. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled automatically to improve the efficiency of the procedure. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure.
Owner:BOARD OF RGT UNVERSITY OF NEBRASKA

On-board tool tracking system and methods of computer assisted surgery

A number of improvements are provided relating to computer aided surgery utilizing an on tool tracking system. The various improvements relate generally to both the methods used during computer aided surgery and the devices used during such procedures. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled using the OTT device. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure including the rate of and type of data processed depending upon a CAS mode.
Owner:TRAK SURGICAL +1

Method for locating the mechanical axis of a femur

There is described a method for determining a mechanical axis of a femur using a computer aided surgery system having an output device for displaying said mechanical axis, the method comprising: providing a position sensing system having a tracking device capable of registering instantaneous position readings and attaching the tracking device to the femur; locating a center of a femoral head of the femur by moving a proximal end of the femur to a first static position, acquiring a fixed reading of the first static position, repeating the moving and the acquiring for a plurality of static positions; and locating the centre by determining a central point of a pattern formed by the plurality of static positions; digitizing an entrance point of the mechanical axis at a substantially central position of the proximal end of the femur; and joining a line between the entrance point and the center of rotation to form the mechanical axis.
Owner:ORTHOSOFT ULC

Method and system for planning/guiding alterations to a bone

A computer-assisted surgery system for planning / guiding alterations to a bone in surgery, comprises a trackable member adapted to be secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data for at least two degrees of freedom in orientation of the trackable member A positioning block is adapted to be secured to the bone, with at least an orientation of the positioning block being adjustable once the positioning block is secured to the bone to reach a selected orientation at which the positioning block is used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data for at least two degrees of freedom in orientation of the positioning block. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block from the orientation-based data. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone as a function of the orientation reference and of the orientation of the positioning block.
Owner:ORTHOSOFT ULC

Method and Apparatus for Computer Aided Surgery

A number of improvements are provided relating to computer aided surgery. The improvement relates to both the methods used during computer aided surgery and the devices used during such procedures. Some of the improvement relate to controlling the selection of which data to display during a procedure and / or how the data is displayed to aid the surgeon. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled automatically to improve the efficiency of the procedure. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure.
Owner:BOARD OF RGT UNVERSITY OF NEBRASKA

Method for locating the mechanical axis of a femur

There is described a method for determining a mechanical axis of a femur using a computer aided surgery system having an output device for displaying said mechanical axis, the method comprising: providing a position sensing system having a tracking device capable of registering instantaneous position readings and attaching the tracking device to the femur; locating a center of a femoral head of the femur by moving a proximal end of the femur to a first static position, acquiring a fixed reading of the first static position, repeating the moving and the acquiring for a plurality of static positions; and locating the centre by determining a central point of a pattern formed by the plurality of static positions; digitizing an entrance point of the mechanical axis at a substantially central position of the proximal end of the femur; and joining a line between the entrance point and the center of rotation to form the mechanical axis.
Owner:ORTHOSOFT ULC

Method and system for computer assisted surgery for bicompartmental knee replacement

A method of resecting distal and anterior portions of a distal portion of a femur for a bicompartmental prosthesis is provided. The method includes generating a geometric representation of the distal portion of the femur. A virtual anterior resection plane is calculated at a predetermined depth and is oriented at a predetermined angle relative to the femur. The method identifies a distal-most point of a lateral portion of the virtual anterior resection plane and an AP line. A varus / valgus angle and an anterior-posterior distance are calculated. Anterior and distal resection guides are navigated according to the parameters calculated from the method.
Owner:SMITH & NEPHEW ORTHOPAEDICS RECON

Devices and methods for automatically verifying, calibrating and surveying instruments for computer-assisted surgery

A device and method for automatically verifying, calibrating and surveying a navigable surgical instrument, wherein by means of a scanning device, the geometry of the instrument, in particular the shape of the functional elements (e.g., tips) and their spatial position with respect to an attachable reference system, are detected. By means of a data processing unit, a three-dimensional model of the instrument is calculated from the detected information concerning the geometry of the instrument including the reference system, wherein verification, calibration or surveying is performed with the aid of the ascertained information concerning the geometry of the instrument.
Owner:BRAINLAB

Method and system for computer assisted surgery

A method and system for computer assisted orthopedic feedback of at least one surgical object relative a pre-operative plan are disclosed. The pre-operative plan includes a virtual object, which is the virtual representation of the surgical object, and a virtual structure, which is the virtual representation of the patient structure. The method comprises providing the pre-operative plan including planned position and orientation of the virtual object relative to of the virtual structure; obtaining the position of the patient structure based on a surface of the patient structure using a surgical navigation system; obtaining the position of the surgical object using the surgical navigation system; registering the patient structure to the virtual structure and the surgical object to the virtual object; tracking a current position and orientation of the surgical object using the surgical navigation system; and providing feedback of a current position and orientation of the surgical object relative to the planned position and orientation of the virtual object based on the tracked current position and orientation of the surgical object.
Owner:ORTOMA AB

On-board tool tracking system and methods of computer assisted surgery

A number of improvements are provided relating to computer aided surgery utilizing an on tool tracking system. The various improvements relate generally to both the methods used during computer aided surgery and the devices used during such procedures. Other improvements relate to the structure of the tools used during a procedure and how the tools can be controlled using the OTT device. Still other improvements relate to methods of providing feedback during a procedure to improve either the efficiency or quality, or both, for a procedure including the rate of and type of data processed depending upon a CAS mode.
Owner:BOARD OF RGT UNIV OF NEBRASKA

Method and system for determining an imaging direction and calibration of an imaging apparatus

The present invention relates to a method for determining an imaging direction of an imaging apparatus (10), such as an x-ray apparatus, with a radiation source or an imaging source (12) that emits an imaging beam (14) to an imaging detector (16) along a beam path, comprising the steps of imaging an object (18) from a first direction to obtain a first 2D image; providing 3D reference data, for example a generic or statistical 3D model or an earlier obtained 3D data set, of the imaged object (18); performing a 2D / 3D matching of the first 2D image with the 3D reference data to determine a position of an imaging plane (20, 22, 24) of the first 2D image relative to the 3D reference data; and determining the imaging direction of the imaging apparatus (10) relative to the object (18) based on the position of the imaging plane (20, 22, 24) relative to the 3D reference data, as well as to a navigation system for computer-assisted surgery comprising the imaging system of the preceding claim; a tracking system (11), such as optical or IR tracking means; detection devices (13, 15) such as e.g. radiopaque markers (13) detectable by the imaging system and markers (15) detectable by the tracking system (11) attachable to an object (18), wherein the navigation system is adapted to detect a position of the object (18) based on the detection devices (13, 15), in order to generate detection signals and to supply the detection signals to the computer (17) such that the computer can determine point data on the basis of the detection signals received; a calibration object such as a patient body or a phantom bearing detection devices for calibrating the navigation system.
Owner:BRAINLAB

Automatic calibration system for computer-aided surgical instruments

A system for automatic calibration of instruments (S) having varying cross-sectional dimensions within a predetermined range and having detectable elements (110, 112, 113, 114) thereon for computer-aided surgery, comprising a calibration base (C) having detectable elements (43, 44, 46, 48) secured thereto for detecting a position and an orientation thereof in space by sensors (204) connected to a position calculator (202). The calibration base is adapted to receive and to releasably secure a working shaft (100) of any of the instruments (S) and provides an abutting surface (14) for a tip (102) thereof in such a way that a position and orientation of the tip (102) of the instrument (S) secured therein is calculable when working shaft cross-section dimensions thereof are known. The position calculator (202) receives instrument data (214) and calibration data (218) from an operator through a user interface (206) and stores the instrument data (214) and calibration data (218) for subsequent calibrations.
Owner:ORTHOSOFT ULC

Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms

A system and method for movement control includes a controller coupled to a computer-assisted surgical device having a first movable arm coupled to a manipulatable device having a working end and a second movable arm coupled to an image capturing device. The controller is configured to receive first configurations for the first movable arm; receive second configurations for the second movable arm; receive a plurality of images of the working end from the image capturing device; determine a position and an orientation of the working end; determine a first movable arm position and trajectory for the first movable arm; determine a second movable arm position and trajectory for the second movable arm; determine whether motion of the movable arms will result in an undesirable relationship between the movable arms; and send a movement command to the first or second movable arm to avoid the undesirable relationship.
Owner:INTUITIVE SURGICAL OPERATIONS INC +1

Device for data input for surgical navigation system

A probe for data input for a computer-assisted surgical system, comprising a body; one or more movable fiducials operably associated with the probe; and one or more stationary fiducials operably associated with the probe; wherein the movement of the one or more movable fiducials relative to the one or more of the stationary fiducials triggers data input on a position or an orientation of the probe, or both. The probe is particularly suitable for minimally invasive surgery. Also provided is a method of using the probe to input data during computer-assisted surgery.
Owner:POTHIER ALBERT +1

Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms

A system and method for movement control includes a controller coupled to a computer-assisted surgical device having a first movable arm coupled to a manipulatable device having a working end and a second movable arm coupled to an image capturing device. The controller is configured to receive first configurations for the first movable arm; receive second configurations for the second movable arm; receive a plurality of images of the working end from the image capturing device; determine a position and an orientation of the working end; determine a first movable arm position and trajectory for the first movable arm; determine a second movable arm position and trajectory for the second movable arm; determine whether motion of the movable arms will result in an undesirable relationship between the movable arms; and send a movement command to the first or second movable arm to avoid the undesirable relationship.
Owner:INTUITIVE SURGICAL OPERATIONS INC +1

Percutaneous registration apparatus and method for use in computer-assisted surgical navigation

An apparatus and procedures for percutaneous placement of surgical implants and instruments such as, for example, screws, rods, wires and plates into various body parts using image guided surgery. The invention includes an apparatus for use with a surgical navigation system, an attaching device rigidly connected to a body part, such as the spinous process of a vertebrae, with an identification superstructure rigidly but removably connected to the attaching device. This identification superstructure, for example, is a reference arc and fiducial array which accomplishes the function of identifying the location of the superstructure, and, therefore, the body part to which it is fixed, during imaging by CAT scan or MRI, and later during medical procedures.
Owner:MEDTRONIC NAVIGATION INC

System and method for modular navigated osteotome

An osteotome instrument for use in computer assisted surgery is disclosed. The instrument includes a shaft, a connector, a handle, and a cutter component. The handle has a proximal end portion and a distal end portion. The cutter component is connected to the handle at the distal end portion. The connector is releasably connected to the handle at the proximal end portion, and the connector is adapted to rotate about the shaft relative to the handle. A fiducial for tracking is connected to the connector.
Owner:SMITH & NEPHEW INC

Support for locating instrument guides

InactiveUS20070100346A1Efficiently and accurately alignmentEfficiently and accurately and orientationDiagnosticsSurgical navigation systemsJoint arthroplastyComputer-assisted surgery
A surgical instrument system includes a cutting instrument, an anchoring structure, a guide structure and an articulating linkage. The anchoring structure can be fixed to a reference or benchmark, such as a location on the patient's bone. The articulating linkage connects the anchoring structure to the guide structure and includes a plurality of lockage ball joints arranged in series. Each ball joint provides for freedom of movement about three axes of rotation. The articulating linkage may include other structures allowing for additional rotational and translational degrees of freedom of movement for the guide structure with respect to the reference or benchmark. The system is useful in positioning, aligning and orienting a cutting block in joint arthroplasty, and may be useful in conjunction with computer assisted surgery. The system may also include computer navigation trackers for use in such computer assisted surgery.
Owner:DEPUY PROD INC

Hip replacement in computer-assisted surgery

A system for calculating a position and orientation of an acetabular cup in computer-assisted surgery comprises a first trackable reference secured to a pelvis, with a frame of reference being associated with the first trackable reference. A device is positionable between a femoral neck and the acetabulum of the pelvis in a known relation, the device having a second trackable reference. Sensors track the trackable references for position and orientation. A position / orientation calculator calculates a position and orientation of the frame of reference and of the device and for determining an orientation of the neck axis with respect to the frame of reference from the known relation at a desired position of the femur. An implant position / orientation calculator provides cup implanting information with respect to the orientation of said neck axis as a function of the tracking for position and orientation of at least the first trackable reference.
Owner:ORTHOSOFT ULC

Hip implant registration in computer assisted surgery

A computer assisted surgical navigation system and method is disclosed for registering the position of prosthetic hip joint components. Elements are applied to the pelvis and femur, generating a three-dimensional array. These two arrays combine to derive a reference point representing the native joint. A tracking device with a pre-determined shape and dimensions that precisely articulate with an acetabular cup component generates a third three-dimensional array. The device has a further shape and dimensions that independently articulate precisely with a neck portion of a femoral component, which represents a prosthetic joint center that is independently registered in the system. The tracking device concurrently registers the three dimensional positions of the femoral and acetabular prosthetic components, along with the prosthetic joint center and the native joint center, respectively enabling alterations in three dimensional location of the leg length and offset prior to reduction of the prosthetic joint.
Owner:BLUE ORTHO

Apparatus for digitizing intramedullary canal and method

An apparatus for obtaining an axis of an intramedullary canal of an exposed bone with a position tracking system in computer-assisted surgery, comprising a detectable device trackable in space for position and orientation. A stem portion is secured to the detectable device so as to be tracked for position and orientation. The stem portion has a leading end insertable in an intramedullary canal of the bone through an opening in the bone, and is adapted to be handled by a following end thereof. A tip portion is provided at the leading end of the stem portion. The tip portion is positionable in a determined way with respect to a surface of the intramedullary canal, such that reference points with respect to the intramedullary canal are calculable as a function of the position and orientation of the detectable device. The reference points are related to define an axis of the intramedullary canal. A method is provided for digitizing the intramedullary canal axis.
Owner:ORTHOSOFT

Apparatus for registering and tracking an instrument

There is provided a device for generating a frame of reference and tracking the position and orientation of a tool in computer-assisted image guided surgery or therapy system. A first curvature sensor including fiducial markers is provided for positioning on a patient prior to volumetric imaging, and sensing the patient's body position during surgery. A second curvature sensor is coupled to the first curvature sensor at one end and to a tool at the other end to inform the computer-assisted image guided surgery or therapy system of the position and orientation of the tool with respect to the patient's body. A system is provided that incorporates curvature sensors, a garment for sensing the body position of a person, and a method for registering a patient's body to a volumetric image data set in preparation for computer-assisted surgery or other therapeutic interventions. This system can be adapted for remote applications as well.
Owner:GEORGE MASON INTPROP INC

Bone tracking with a gyroscope sensor in computer-assisted surgery

A system tracks an object in computer-assisted surgery. The system comprises a sensor unit secured to the femur. Gyroscopes on the sensor unit produce readings related to orientation data about three axes of rotation. A tracking unit receives the gyroscope readings. An axis calibrator on the tracking unit comprises a calculator for adding at least part of the gyroscope readings for specific movements of the object about a desired axis. An axis normalizer on the tracking unit determines an orientation of the desired axis with respect to the sensor unit from the added gyroscope readings. A tracking processor tracks the desired axis from the gyroscope readings. An interface displays orientation data for the object from a tracking of the desired axis. A method for tracking an object with a gyroscope sensor unit is also provided.
Owner:ORTHOSOFT ULC

Methods and systems for intraoperative measurement of soft tissue constraints in computer aided total joint replacement surgery

InactiveUS20050119661A1Maintaining soft tissue balance of the replacement kneeDraw tensionDiagnosticsSurgical navigation systemsTibiaMathematical model
Methods and systems are described to quantitatively determine the degree of soft tissue constraints on knee ligaments and for properly determining placement parameters for prosthetic components in knee replacement surgery that will minimize strain on the ligaments. In one aspect, a passive kinetic manipulation technique is used in conjunction with a computer aided surgery (CAS) system to accurately and precisely determine the length and attachment sites of ligaments. These manipulations are performed after an initial tibial cut and prior to any other cuts or to placement of any prosthetic component. In a second aspect, a mathematical model of knee kinematics is used with the CAS system to determine optimal placement parameters for the femoral and tibial components of the prosthetic device that minimizes strain on the ligaments.
Owner:HODGSON ANTONY J +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products