Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8344results about "Surgical navigation systems" patented technology

Electro-mechanical surgical device

An electro-mechanical surgical device includes: a housing; an elongated shaft extending from the housing, a distal end of the elongated shaft being detachably coupleable to a surgical instrument; at least two axially rotatable drive shafts disposed within the elongated shaft, a distal end of each of the drive shafts being configured to couple with the surgical instrument; a steering cable arrangement, the steering cable arrangement being configured to steer the distal end of the elongated shaft; and a motor system disposed within the housing, the motor system being configured to drive the drive shafts and the steering cable arrangement. A control system may be provided for controlling the motor system. A remote control unit may also be provided for controlling the motor system via the control system. Sensors, such as optical or Hall-effect devices, may be provided for determining the position of the elements of the surgical instrument based on the detected rotation of the drive shafts. A memory unit stores a plurality of operating programs or algorithms, each corresponding to a type of surgical instrument attachable to the electro-mechanical surgical device. The control system reads or selects from the plurality of operating programs or algorithms, the operating program or algorithm corresponding to the type of surgical instrument attached to the electro-mechanical surgical device.
Owner:COVIDIEN LP

Electro-mechanical surgical device

An electro-mechanical surgical device includes: a housing; an elongated shaft extending from the housing, a distal end of the elongated shaft being detachably coupleable to a surgical instrument; at least two axially rotatable drive shafts disposed within the elongated shaft, a distal end of each of the drive shafts being configured to couple with the surgical instrument; a steering cable arrangement, the steering cable arrangement being configured to steer the distal end of the elongated shaft; and a motor system disposed within the housing, the motor system being configured to drive the drive shafts and the steering cable arrangement. A control system may be provided for controlling the motor system. A remote control unit may also be provided for controlling the motor system via the control system. Sensors, such as optical or Hall-effect devices, may be provided for determining the position of the elements of the surgical instrument based on the detected rotation of the drive shafts. A memory unit stores a plurality of operating programs or algorithms, each corresponding to a type of surgical instrument attachable to the electro-mechanical surgical device. The control system reads or selects from the plurality of operating programs or algorithms, the operating program or algorithm corresponding to the type of surgical instrument attached to the electro-mechanical surgical device.
Owner:TYCO HEALTHCARE GRP LP

Robotically-controlled end effector

The present invention is directed to a surgical instrument with a robotics system, a memory device and an end effector having an elongate channel, knife position sensor(s) and a firing bar coupled to a knife. In response to drive motions initiated by the robotics system, the firing bar may translate within the elongate channel. As the firing bar translates, the sensor(s) transmit a signal to the memory device. The position of the knife may be determined from the output signals and may be communicated to the robotics system or instrument user. The sensors may be Hall Effect sensors.
Owner:CILAG GMBH INT

Electro-mechanical surgical device

An electro-mechanical surgical device includes: a housing; an elongated shaft extending from the housing, a distal end of the elongated shaft being detachably coupleable to a surgical instrument; at least two axially rotatable drive shafts disposed within the elongated shaft, a distal end of each of the drive shafts being configured to couple with the surgical instrument; a steering cable arrangement, the steering cable arrangement being configured to steer the distal end of the elongated shaft; and a motor system disposed within the housing, the motor system being configured to drive the drive shafts and the steering cable arrangement. A control system may be provided for controlling the motor system. A remote control unit may also be provided for controlling the motor system via the control system. Sensors, such as optical or Hall-effect devices, may be provided for determining the position of the elements of the surgical instrument based on the detected rotation of the drive shafts. A memory unit stores a plurality of operating programs or algorithms, each corresponding to a type of surgical instrument attachable to the electro-mechanical surgical device. The control system reads or selects from the plurality of operating programs or algorithms, the operating program or algorithm corresponding to the type of surgical instrument attached to the electro-mechanical surgical device.
Owner:TYCO HEALTHCARE GRP LP

Microsurgical robot system

A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool. The robot is MRI compatible and can be configured to operate within a closed magnet bore. The arms are driven about vertical and horizontal axes by piezoelectric motors.
Owner:DEERFIELD IMAGING INC

Wireless position sensor

Apparatus for tracking an object includes a plurality of field generators, which generate electromagnetic fields at different, respective frequencies in a vicinity of the object, and a radio frequency (RF) driver, which radiates a RF driving field toward the object. A wireless transponder is fixed to the object. The transponder includes at least one sensor coil, in which a signal current flows responsive to the electromagnetic fields, and a power coil, which receives the RF driving field and conveys electrical energy from the driving field to power the transponder. The power coil also transmits an output signal responsive to the signal current to a signal receiver, which processes the signal to determine coordinates of the object.
Owner:BIOSENSE

Catheterscope 3D guidance and interface system

ActiveUS20050182295A1Effective steeringReduce errorsBronchoscopesLaryngoscopesHigh-resolution computed tomographyGraphics
Visual-assisted guidance of an ultra-thin flexible endoscope to a predetermined region of interest within a lung during a bronchoscopy procedure. The region may be an opacity-identified by non-invasive imaging methods, such as high-resolution computed tomography (HRCT) or as a malignant lung mass that was diagnosed in a previous examination. An embedded position sensor on the flexible endoscope indicates the position of the distal tip of the probe in a Cartesian coordinate system during the procedure. A visual display is continually updated, showing the present position and orientation of the marker in a 3-D graphical airway model generated from image reconstruction. The visual display also includes windows depicting a virtual fly-through perspective and real-time video images acquired at the head of the endoscope, which can be stored as data, with an audio or textual account.
Owner:UNIV OF WASHINGTON

Navigational guidance via computer-assisted fluoroscopic imaging

Digital x-ray images taken before a surgical procedure by a fluoroscopic C-arm imager are displayed by a computer and overlaid with graphical representations of instruments be used in the operating room. The graphical representations are updated in real-time to correspond to movement of the instruments in the operating room. A number of different techniques are described that aid the physician in planning and carrying out the surgical procedure.
Owner:MEDTRONIC NAVIGATION

Performing cardiac surgery without cardioplegia

A surgical system or assembly for performing cardiac surgery includes a surgical instrument; a servo-mechanical system engaged to the surgical instrument for operating the surgical instrument; and an attachment assembly for removing at least one degree of movement from a moving surgical cardiac worksite to produce a resultant surgical cardiac worksite. The surgical system or assembly also includes a motion tracking system for gathering movement information on a resultant surgical cardiac worksite. A control computer is engaged to the attachment assembly and to the motion tracking system and to the servo-mechanical system for controlling movement of the attachment assembly and for feeding gathered information to the servo-mechanical system for moving the surgical instrument in unison with the resultant surgical cardiac worksite such that a relative position of the moving surgical instrument with respect to the resultant surgical cardiac worksite is generally constant. A video monitor is coupled to the control computer; and an input system is coupled to the servo-mechanical system and to the control computer for providing a movement of the surgical instrument. The video monitor displays movement of the surgical instrument while the resultant surgical cardiac worksite appears substantially stationary, and while a relative position of the surgical instrument moving in unison with the resultant surgical cardiac worksite, as a result from the movement information gathered by the motion tracking system, remains generally constant. A method of performing cardiac surgery without cardioplegia comprising removing at least one degree of movement freedom from a moving surgical cardiac worksite to produce at least a partially stationary surgical cardiac worksite while allowing a residual heart section, generally separate from the at least partially stationary surgical cardiac worksite, to move as a residual moving heart part. Cardiac surgery is performed on the at least partially stationary cardiac worksite with a surgical instrument such as needle drivers, forceps, blades and scissors.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Patient Selectable Joint Arthroplasty Devices and Surgical Tools

Disclosed herein are methods, compositions and tools for repairing articular surfaces repair materials and for repairing an articular surface. The articular surface repairs are customizable or highly selectable by patient and geared toward providing optimal fit and function. The surgical tools are designed to be customizable or highly selectable by patient to increase the speed, accuracy and simplicity of performing total or partial arthroplasty.
Owner:CONFORMIS

Device and process for calibrating geometrical measurements of surgical tools and orienting the same in space

A device (1) for calibrating geometrical measurements of surgical tools (10) as well as for orienting the same in space, including: A) a docking station (2) having two jaws (3) and a surface (21); and B) at least three marking indicators (9) firmly attached to the docking station (2) and capable of being measured, in reference to their position in space, electromagnetically or acoustically through a position detecting device (14), where C) the jaws (3) each have a lateral wall (40) so that the surface (21) and the lateral walls (21) of the two jaws (3) enclose a U-shaped passage (18), where D) the two jaws are conformed in a cylindrical or double conical manner; and E) the two lateral walls (40) or the surface (21) present a form comprising at least two additional contact points for a surgical tool (10) inserted between the jaws (3) across its longitudinal axis (11).
Owner:AO TECH AG

Mechanized multi-instrument surgical system

A surgical system includes an instrument driver having a distal end positionable in a body cavity and a user input device. The instrument driver and user input device are positioned to removably receive distal and proximal portions, respectively, of a surgical instrument. The user input device is configured to generate movement signals in response to manual manipulation of the proximal portion of the surgical instrument. At least one motor operable to actuate the instrument driver in response to the movement signals and to thereby change position of the distal portion of the surgical instrument within the body cavity.
Owner:GREAT BELIEF INT LTD

System and method for a tissue resection margin measurement device

Embodiments of the invention provide a system and method for resecting a tissue mass. The system for resecting a tissue mass includes a surgical instrument and a first sensor for measuring a signal corresponding to the position and orientation of the tissue mass. The first sensor is dimensioned to fit insider or next to the tissue mass. The system also includes a second sensor attached to the surgical instrument configured to measure the position and orientation of the surgical instrument. The second sensor is configured to receive the signal from the first sensor. A controller is in communication with the first sensor and / or the second sensor, and the controller executes a stored program to calculate a distance between the first sensor and the second sensor. Accordingly, visual, auditory, haptic or other feedback is provided to the clinician to guide the surgical instrument to the surgical margin.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products