Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5138results about "Ear treatment" patented technology

Sealed surgical access device

InactiveUS7052454B2” laparoscopy is greatly facilitatedFulfil requirementsEar treatmentCannulasCouplingEngineering
A surgical access device is adapted to facilitate access through an incision in a body wall having an inner surface and an outer surface, and into a body cavity of a patient. The device includes first and second retention members adapted to be disposed in proximity to the outer surface and the inner surface of the body wall, respectively. A membrane extending between the two retention members forms a throat which is adapted to extend through the incision and form a first funnel extending from the first retention member into the throat, and a second funnel extending from the second retention member into the throat. The throat of the membrane has characteristics for forming an instrument seal in the presence of an instrument and a zero seal in the absence of an instrument. The first retention member may include a ring with either a fixed or variable diameter. The ring can be formed in first and second sections, each having two ends. Couplings can be disposed between the ends to accommodate variations in the size of the first retention member. The first retention member can also be formed as an inflatable toroid, a self-expanding foam, or a circumferential spring. A plurality of inflatable chambers can also provide the surgical access device with a working channel adapted for disposition across the body wall. A first retention member with a plurality of retention stations functions with a plurality of tethers connected to the membrane to change the shape of the membrane and the working channel. A stabilizing platform can be used to support the access device generally independent of any movement of the body wall.
Owner:APPL MEDICAL RESOURCES CORP

Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same

Prosthetic valves and their component parts are described, as are prosthetic valve delivery devices and methods for their use. The prosthetic valves are particularly adapted for use in percutaneous aortic valve replacement procedures. The delivery devices are particularly adapted for use in minimally invasive surgical procedures.
Owner:AORTX

Cardiac valve procedure methods and devices

The present invention discloses devices and methods for performing intravascular procedures with out: cardiac bypass. The devices include various embodiments of temporary filter devices, temporary valves, and prosthetic valves. The temporary filter devices have one or more cannulae which provide access for surgical tools for effecting repair of the cardiac valves. A cannula may have filters of various configurations encircling the distal region of the cannula, which prevent embolitic material from entering the coronary arteries and aorta. The temporary valve devices may also have one or more cannulae which guide the insertion of the valve into the aorta. The valve devices expand in the aorta to occupy the entire flow path of the vessel. In one embodiment, the temporary valve is a disc of flexible, porous, material that acts to filter blood passing therethrough. A set of valve leaflets extend peripherally from the disc. These leaflets can alternately collapse to prevent blood flow through the valve and extend to permit flow. The prosthetic valves include valve fixation devices which secure the prosthetic valve to the wall of the vessel. In one embodiment, the prosthetic valves have at least one substantially rigid strut, at least two expandable fixation rings located about the circumference of the base of the apex of the valve, and one or more commissures and leaflets. The prosthetic valves are introduced into the vascular system a compressed state, advanced to the site of implantation, expanded and secured to the vessel wall.
Owner:MEDTRONIC INC

Devices, systems and methods for treating disorders of the ear, nose and throat

Sinusitis, mucocysts, tumors, infections, hearing disorders, choanal atresia, fractures and other disorders of the paranasal sinuses, Eustachian tubes, Lachrymal ducts and other ear, nose, throat and mouth structures are diagnosed and / or treated using minimally invasive approaches and, in many cases, flexible catheters as opposed to instruments having rigid shafts. Various diagnostic procedures and devices are used to perform imaging studies, mucus flow studies, air / gas flow studies, anatomic dimension studies and endoscopic studies. Access and occluding devices may be used to facilitate insertion of working devices such asendoscopes, wires, probes, needles, catheters, balloon catheters, dilation catheters, dilators, balloons, tissue cutting or remodeling devices, suction or irrigation devices, imaging devices, sizing devices, biopsy devices, image-guided devices containing sensors or transmitters, electrosurgical devices, energy emitting devices, devices for injecting diagnostic or therapeutic agents, devices for implanting devices such as stents, substance eluting or delivering devices and implants, etc.
Owner:ACCLARENT INC

Anchor and pull mitral valve device and method

A device, system, and method effects mitral valve annulus geometry of a heart. The device includes a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart. A cable is fixed to the first anchor and extends proximately therefrom and slidingly through a second anchor which is positioned and fixed in the heart proximal to the first anchor. A lock locks the cable to the second anchor when tension is applied to the cable for effecting the mitral valve annulus geometry.
Owner:CARDIAC DIMENSIONS

Device for the implantation and fixation of prosthetic valves

A device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent (10) with a prosthetic heart valve (11) at its proximal end is introducible into a patient's main artery. With the objective of optimizing such a device to the extent that the prosthetic heart valve (11) can be implanted into a patient in a minimally-invasive procedure, to ensure optimal positioning accuracy of the prosthesis (11) in the patient's ventricle, the device includes a self-expanding positioning stent (20) introducible into an aortic valve positioned within a patient. The positioning stent is configured separately from the heart valve stent (10) so that the two stents respectively interact in their expanded states such that the heart valve stent (10) is held by the positioning stent (20) in a position in the patient's aorta relative the heart valve predefinable by the positioning stent (20).
Owner:JENAVALVE TECH INC

Stent delivery system for prevention of kinking, and method of loading and using same

A stent delivery system adapted to deliver a compressed stent to a distal deployment location inside a body lumen from a proximal access location outside the body lumen. The system houses a compressed stent and includes a pusher and a catheter tip attached to a central core slideably disposed within the pusher. At least one of the pusher distal end and catheter tip proximal end comprises a docking section adapted to releasably engage a limited length of one end of the compressed stent. The docking section may comprise a pocket having a flared end rim that is radially biased outward and adapted to be inwardly compressed to grip the stent end when the docking section is loaded in an outer sheath. Other docking section configurations are also disclosed, such as an insert within the stent, an annular pocket, and / or a set of fingers that grip the stent. A docking pusher and a docking catheter tip having such docking sections are disclosed, as are methods for loading and deploying a stent with a stent delivery system as described herein.
Owner:LIFEPORT SCI

Locking handle deployment mechanism for medical device and method

InactiveUS6866669B2Easy and accurate deployment and positioningEasy to operateStentsEar treatmentLocking mechanismMedical device
A system for delivering at least one medical device to a desired location for treatment, and then selectively deploy it in position, includes an improved handle. One of the possible features of the handle may be to selectively hold the delivery system components at any desired configuration during deployment and positioning of the medical device. Another possible feature of the handle may be more than one mode of operation, in which the deployment of the medical device can selectively proceed at more than one speed. Yet another possible feature of the handle may be a locking mechanism that resists inadvertent or accidental movement or retraction of the stent delivery system components during packaging, sterilization, shipping, storage, handling and preparation of the stent delivery system.
Owner:CARDINAL HEALTH SWITZERLAND 515 GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products