Disclosed are a device and a system for simulating normal and disease state cardiovascular functioning, the device including an anatomically accurate cardiac simulator for training and medical device testing. The system and the device use pneumatically pressurized chambers to generate ventricle and atrium contractions. In conjunction with the interaction of synthetic valves, which simulate mitral and aortic valves, the system is designed to generate pumping action that produces accurate volume fractions and pressure gradients of pulsatile flow, duplicating that of a human heart. Through the use of a control unit and sensors, one or more parameters, such as flow rates, fluidic pressure, and heart rate, may be automatically controlled, using feedback loop mechanisms to adjust parameters of the hydraulic system to simulate a wide variety of cardiovascular conditions including normal heart function, severely diseased or injured heart conditions, and compressed vasculature, such as hardening of the arteries.