Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

155 results about "Ventricular wall" patented technology

The walls of the ventricles are thick and muscled because they must be strong enough to push blood away from the heart and through the body. The muscular wall that lines the ventricle is called the interventricle wall.

Device for treating mitral valve regurgitation

A system for treating mitral valve regurgitation comprises tensioning device that can be deployed using a delivery catheter. The device includes tension member linking a proximal anchor and distal anchor. The device is constructed from a material having suitable elastic properties such that the device applies a constant tension force between the anchors, while stretching or flexing in response to a heartbeat when positioned across a chamber of a heart. The anchors may include a plurality of arms. In some embodiments, the arms may also flex in response to a heart beat. When positioned across the left ventricle of a heart, the device can reduce the lateral distance between the walls of the ventricle and thus allow better coaption of the mitral valve leaflets thereby reducing mitral regurgitation.
Owner:MEDTRONIC VASCULAR INC

Methods and apparatus for atrioventricular valve repair

Methods and apparatus for use in repairing an atrioventricular valve in a patient are provided. The methods comprise accessing the patient's atrioventricular valve percutaneously, securing a fastening mechanism to a valve leaflet, and coupling the valve leaflet, while the patient's heart remains beating, to at least one of a ventricular wall adjacent the atrioventricular valve, a papillary muscle, at least one valve chordae, and a valve annulus to facilitate reducing leakage through the valve.
Owner:CRABTREE TRAVES DEAN

Ventricular partitioning device

This invention is directed to a partitioning device for separating a patient's heart chamber into a productive portion and a non-productive portion. The device is particularly suitable for treating patients with congestive heart failure. The partitioning device has a reinforced, expandable membrane which separates the productive and non-productive portions of the heart chamber and a support or spacing member extending between the reinforced membrane and the wall of the patient's heart chamber. The support or spacing member has a non-traumatic distal end to engage the ventricular wall.
Owner:EDWARDS LIFESCIENCES CORP

Ventricular partitioning device

This invention is directed to a partitioning device for separating a patient's heart chamber into a productive portion and a non-productive portion. The device is particularly suitable for treating patients with congestive heart failure. The partitioning device has a frame-reinforced, expandable membrane which separates the productive and non-productive portions of the heart chamber. The proximal ends of the ribs of the frame have tissue penetrating elements about the periphery thereof which are configured to penetrate tissue lining the heart wall at an angle approximately perpendicular to a longitudinal axis of the partitioning device. The partitioning device has a hub with a non-traumatic distal end to engage the ventricular wall.
Owner:EDWARDS LIFESCIENCES CORP

Methods and devices for altering blood flow through the left ventricle

ActiveUS20050015109A1Lower the volumeInefficient geometry for pumpingHeart valvesDilatorsBlood flowMaterial Perforation
An element is expanded in the left ventricle to isolate part of the left ventricle. The element has a generally convex outer surface and an apex which together define a desired geometry of the left ventricle. The isolated part of the wall of the left ventricle may be left so that the wall naturally forms around the element or the isolated portion of the ventricle may be evacuated and / or filled. The element may also be used to isolate part of the left ventricle containing a ventricular septal defect or other perforation or opening in the ventricular wall.
Owner:KARDIUM

Mitral valve treatment techniques

Apparatus (20) is provided for treating mitral valve regurgitation, including a band (30) having distal and proximal ends, the band (30) adapted to be placed: around between 90 and 270 degrees of a mitral valve (58), including around at least a portion of a posterior cusp (56) of the valve (58), in a space defined by (a) a ventricular wall (70), (b) a ventricular surface of the posterior cusp (56) in a vicinity of an annulus (60) of the mitral valve (58), and (c) a plurality of third-order chordae tendineae (74). The apparatus (20) further includes distal and proximal coupling elements (32, 34), coupled to the band (30) at the distal and proximal ends thereof, respectively, and adapted to be coupled to a first chorda tendinea and a second chorda tendinea, respectively, each of the first and second chordae tendineae selected from the group consisting of: one of the plurality of third-order chordae tendineae (74), and a first-order chorda tendinea that inserts on a commissural cusp (78) of the mitral valve (58). Additional embodiments are also described.
Owner:VALTECH CARDIO LTD

Valve prosthesis including a prosthetic leaflet

A prosthesis for repairing a damaged valve such as a heart mitral valve is disclosed. The prothesis comprises a prosthetic valve leaflet mounted on a frame. When implanted in a mitral valve, the leaflet replaces the function of an endogenous valve leaflet and coapts with an opposed endogenous valve leaflet. The prosthesis may further comprise a strut or other member to which the edge of an opposed valve leaflet can be sutured, and which can be used to correct deformities of a ventricle wall. Further disclosed is a method of repairing a damaged heart valve by providing a prosthetic valve leaflet or by providing a prosthetic valve leaflet and prosthetic attachment points for an opposed valve leaflet.
Owner:ASHE KASSEM ALI

System for improving diastolic dysfunction

An elastic structure is introduced percutaneously into the left ventricle and attached to the walls of the ventricle. Over time the structure bonds firmly to the walls via scar tissue formation. The structure helps the ventricle expand and fill with blood during the diastolic period while having little affect on systolic performance. The structure also strengthens the ventricular walls and limits the effects of congestive heart failure, as the maximum expansion of the support structure is limited by flexible or elastic members.
Owner:KARDIUM

Methods of implanting a mitral valve annuloplasty ring to correct mitral regurgitation

Methods of implanting an annuloplasty ring to correct maladies of the mitral annulus that not only reshapes the annulus but also reconfigures the adjacent left ventricular muscle wall. The ring may be continuous and is made of a relatively rigid material, such as Stellite. The ring has a generally oval shape that is three-dimensional at least on the posterior side. A posterior portion of the ring rises or bows upward from adjacent sides to pull the posterior aspect of the native annulus farther up than its original, healthy shape. In doing so, the ring also pulls the ventricular wall upward which helps mitigate some of the effects of congestive heart failure. Further, one or both of the posterior and anterior portions of the ring may also bow inward. The methods include securing the annuloplasty ring with the anterior portion against the annulus anterior aspect and the posterior portion against the annulus posterior aspect so that the ring posterior portion elevates and may also pull radially inward, the annulus posterior aspect and corrects the mitral regurgitation.
Owner:EDWARDS LIFESCIENCES CORP

Method and system for extracting cardiac parameters from plethysmographic signals

This invention provides methods and systems for extracting cardiac parameters, including ventricular wall motion, from a plethysmographic signal is provided. Additionally, the invention provides a wide range of uses and system configurations for cardiac monitoring, including ambulatory uses, uses for stress testing, uses for monitoring first responder personnel, and the like.
Owner:ADIDAS

Mitral valve treatment techniques

Apparatus (20) is provided for treating mitral valve regurgitation, including a band (30) having distal and proximal ends, the band (30) adapted to be placed: around between 90 and 270 degrees of a mitral valve (58), including around at least a portion of a posterior cusp (56) of the valve (58), in a space defined by (a) a ventricular wall (70), (b) a ventricular surface of the posterior cusp (56) in a vicinity of an annulus (60) of the mitral valve (58), and (c) a plurality of third-order chordae tendineae (74). The apparatus (20) further includes distal and proximal coupling elements (32, 34), coupled to the band (30) at the distal and proximal ends thereof, respectively, and adapted to be coupled to a first chorda tendinea and a second chorda tendinea, respectively, each of the first and second chordae tendineae selected from the group consisting of: one of the plurality of third-order chordae tendineae (74), and a first-order chorda tendinea that inserts on a commissural cusp (78) of the mitral valve (58). Additional embodiments are also described.
Owner:VALTECH CARDIO LTD

Methods and apparatus for atrioventricular valve repair

Methods and apparatus for use in repairing an atrioventricular valve in a patient are provided. The methods comprise accessing the patient's atrioventricular valve percutaneously, securing a fastening mechanism to a valve leaflet, and coupling the valve leaflet, while the patient's heart remains beating, to at least one of a ventricular wall adjacent the atrioventricular valve, a papillary muscle, at least one valve chordae, and a valve annulus to facilitate reducing leakage through the valve.
Owner:CRABTREE TRAVES DEAN

Treatment of infarct expansion by partially occluding vena cava

InactiveUS20060064059A1Reduces severity and complicationReduce expansionBalloon catheterSurgeryVeinVenous blood flow
A method and apparatus for prevention and reduction of myocardial infarct size and / or expansion and heart remodeling by partial, controllable and reversible obstruction of the venous blood flow to the heart. As a result, the ventricular wall stress and dilation are reduced. Blood flow is maintained at a safe level for the duration of treatment. The apparatus consists of a catheter with an occlusion balloon and a control and monitoring system.
Owner:GELFAND MARK +1

Method and apparatus for closing off a portion of a heart ventricle

Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along the anchor body combined with a mechanical stop and a sealing member hold the device in place once deployed.
Owner:BIOVENTRIX A CHF TECH

Method and apparatus for trephinating body vessels and hollow organ walls

A system is disclosed for creating a hole in a body vessel or hollow organ. Such holes are useful in surgically preparing the hollow organ or body vessel for connection with another hollow organ, body vessel or prosthetic conduit. For example, an assist device is generally connected to the left ventricle through a ventriculotomy created at the apex of the left ventricle. This ventriculotomy is most easily created with a punch or trephine. Control over such a procedure must be precise so as not to damage the ventricular wall or intracardiac structures such as papillary muscles, chordae tendinae, etc. The punch of the current invention allows for precise location and alignment of the cutting segment. The punch of the current invention also allows for precise advance of the cutting blade and a very clean cut of the tissue. Such clean cuts improve the healing when the hole in the body vessel or hollow organ is closed or attached to a connection, either prosthetic or natural.
Owner:INDIAN WELLS MEDICAL

Inflatable ventricular partitioning device

This invention is directed to a device and method of using the device for partitioning a patient's heart chamber into a productive portion and a non-productive portion. The device is particularly suitable for treating patients with congestive heart failure. The device has an inflatable partitioning element which separates the productive and non-productive portions of the heart chamber and in some embodiments also has a supporting element, which may also be inflatable, extending between the inflatable partitioning element and the wall of the non-productive portion of the patient's heart chamber. The supporting element may have a non-traumatic distal end to engage the ventricular wall or a tissue penetrating anchoring element to secure the device to the patient's heart wall.
Owner:EDWARDS LIFESCIENCES CORP

Method and apparatus for closing off a portion of a heart ventricle

Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along the anchor body combined with a mechanical stop and a sealing member hold the device in place once deployed.
Owner:BIOVENTRIX A CHF TECH

Method and apparatus for trephinating body vessels and hollow organ walls

A system is disclosed for creating a hole in a body vessel or hollow organ. Such holes are useful in surgically preparing the hollow organ or body vessel for connection with another hollow organ, body vessel or prosthetic conduit. For example, an assist device is generally connected to the left ventricle through a ventriculotomy created at the apex of the left ventricle. This ventriculotomy is most easily created with a punch or trephine. Control over such a procedure must be precise so as not to damage the ventricular wall or intracardiac structures such as papillary muscles, chordae tendinae, etc. The punch of the current invention allows for precise location and alignment of the cutting segment. The punch of the current invention also allows for precise advance of the cutting blade and a very clean cut of the tissue. Such clean cuts improve the healing when the hole in the body vessel or hollow organ is closed or attached to a connection, either prosthetic or natural.
Owner:BREZNOCK EUGENE M +1

Cinching of dilated heart muscle

ActiveUS20190151093A1Reducing direct distanceReduce distanceHeart valvesHeart chamberCardiac muscle
Methods, systems, and apparatuses for treating a heart are provided. Methods can include obtaining and using an implant. One or more catheters can be used to properly position and attach the implant in a desired location in a chamber of the heart, for example, on a ventricular wall of the left ventricle between one or more papillary muscles of the left ventricle and the annulus. Then a distance along the implant or a region of the heart, for example, between the papillary muscle and the annulus, can be reduced by contracting the implant along its longitudinal axis by applying tension to a contraction member of the implant. Other embodiments are described.
Owner:VALTECH CARDIO LTD

Cardiac stimulation at high ventricular wall stress areas

An apparatus and method for reversing ventricular remodeling with electro-stimulatory therapy. A ventricle is paced by delivering one or more stimulatory pulses in a manner such that a stressed region of the myocardium is pre-excited relative to other regions in order to subject the stressed region to a lessened preload and afterload during systole. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling.
Owner:CARDIAC PACEMAKERS INC

Mitral valve treatment techniques

A method is provided for treating mitral valve regurgitation, including inserting a band around between 90 and 270 degrees of a mitral valve of a heart, including around at least a portion of a posterior cusp of the valve, in a space defined by (a) a ventricular wall, (b) a ventricular surface of the posterior cusp in a vicinity of an annulus of the valve, and (c) a plurality of chordae tendineae of one or more types of chordae tendineae selected from the group consisting of: second-order chordae tendineae and third-order chordae tendineae. The method also includes applying pressure to the posterior cusp by inflating the band.
Owner:VALTECH CARDIO LTD

System and method for intraventricular treatment

Various methods and devices are provided for remodeling a heart's ventricular walls and improving of the function of the atrioventricular valves from within the ventricle or atrium through the use of tensioning structures. In one embodiment, a device for stabilizing a ventricle is provided and can include a superior tension member having a substantially arcuate shape that is sized and configured to improve a functioning of atrioventricular valve leaflets. The device can also include a descending tension member extending inferiorly from at least a portion of the superior tension member that is shaped to correspond to a wall of a ventricular cavity. The device can further include a plurality of anchors provided at least on the descending tension member that have attachment features for holding a wall of a ventricular cavity to the descending tension member.
Owner:THE GENERAL HOSPITAL CORP

Cardiac stimulation at high ventricular wall stress areas

An apparatus and method for reversing ventricular remodeling with electro-stimulatory therapy. A ventricle is paced by delivering one or more stimulatory pulses in a manner such that a stressed region of the myocardium is pre-excited relative to other regions in order to subject the stressed region to a lessened preload and afterload during systole. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling.
Owner:CARDIAC PACEMAKERS INC

Smart Tip LVAD Inlet Cannula

Embodiments of the invention provide a left ventricular assist device (LVAD) cannula that includes multiple independent sensors may help decrease the incidence of ventricular collapse and provide automatic speed control. A cannula may include two or more independent sensors. One sensor may measure ventricular pressure, while another may measure ventricular volume and / or ventricular wall location. With this information an automatic control system may be configured to adjust pump speed to minimize the likelihood of ventricular collapse and maximize LVAD flow in response to physiologic demand. Typically the volume sensors are conductance sensors. Further embodiments provide LVADs that are powered by RF energy.
Owner:PENN STATE RES FOUND

Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring

A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves. A bioprosthetic heart valve of the present invention may include a support stent having three outflow commissures alternating with three inflow cusps, with two of the commissures being located at the same place as two raised portions of the sewing ring. A method of implant includes tilting the prosthetic heart valve in the mitral annulus so that a posterior commissure angles away from the ventricular wall and reduces the chance of contact therebetween.
Owner:EDWARDS LIFESCIENCES CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products