Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47 results about "Heart mitral valve" patented technology

Anatomical terminology. [edit on Wikidata] The mitral valve (/ˈmaɪtrəl/), also known as the bicuspid valve or left atrioventricular valve, is a valve with two flaps in the heart, that lies between the left atrium and the left ventricle.

Heart valve holder that resist suture looping

An improved holder, system and method for implanting a tissue-type prosthetic mitral heart valve that prevents suture looping and may also constrict the commissure posts of the valve. The holder may include two relatively movable plates, one of which attaches to the valve sewing on the inflow end of the valve ring and the other which attaches via sutures or similar expedient to the valve commissures on the outflow end. Separation of the plates places the sutures in tension and constricts the commissures. The sutures may be strands or filaments, or may be wider bands of flexible biocompatible material. If bands are used, they desirably cover the commissure post tips to further help prevent suture looping thereover. The flexible lengths of material extend directly between commissures of the valve, or may extending radially inward from each commissure to a central upstanding member. Desirably, a slide is created by the flexible lengths of material adjacent each commissure post, for example by crossing over suture filaments at or radially inward from the commissure posts. If an upstanding member is used, the lengths of suture extend axially beyond the commissure post tips to create a tent that wards off sutures that otherwise might loop around the tips during advancement of the valve along an array of pre-implanted sutures.
Owner:EDWARDS LIFESCIENCES CORP

Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring

A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves. A bioprosthetic heart valve of the present invention may include a support stent having three outflow commissures alternating with three inflow cusps, with two of the commissures being located at the same place as two raised portions of the sewing ring. A method of implant includes tilting the prosthetic heart valve in the mitral annulus so that a posterior commissure angles away from the ventricular wall and reduces the chance of contact therebetween.
Owner:EDWARDS LIFESCIENCES CORP

Prosthetic mitral heart valve having a contoured sewing ring

A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves. A bioprosthetic heart valve of the present invention may include a support stent having three outflow commissures alternating with three inflow cusps, with two of the commissures being located at the same place as two raised portions of the sewing ring. A method of implant includes tilting the prosthetic heart valve in the mitral annulus so that a posterior commissure angles away from the ventricular wall and reduces the chance of contact therebetween.
Owner:EDWARDS LIFESCIENCES CORP

Quantitative analysis method for three-dimensional geometric structure of heart mitral valve device

The invention discloses a quantitative analysis method for a three-dimensional geometric structure of a heart mitral valve device in the technical field of computer application. Quantitative analysis is realized by establishing a three-dimensional simplified model of the mitral valve device and using three-dimensional geometric structure parameters of a local coordinate system of the mitral valve device as the input of a support vector machine-based classification system. According to the method, reconstruction of the mitral valve device is not affected by an imaging mode, and the simplified three-dimensional model of the mitral valve device is obtained. The local coordinate system of the mitral valve device is established on the basis of simplified expression, so that the mitral valve device is independent of the influence factors such as the position of a sampling probe, heart motion displacement and displacement of a detected main body and the like, the three-dimensional geometric structure parameters of the mitral valve device are calculated, and the structure and the function of the mitral valve device and the spatial structure relation between the components of the mitral valve device are described.
Owner:SHANGHAI JIAO TONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products