Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4308 results about "Support vector machine" patented technology

In machine learning, support-vector machines (SVMs, also support-vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic classification setting). An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on the side of the gap on which they fall.

Object detector, object detecting method and robot

An object detector, an object detecting method and a robot can reduce diction errors of detecting wrong objects without increasing the volume of the computational operation to be performed to detect the right object. A face detector 101 comprises a face detecting section 110 that operates like a conventional face detecting section and is adapted to roughly select face candidates from an input image by template matching and detect face candidates by means of a support vector machine for face recognition, a non-face judging section 120 that detects non-face candidates that are judged to be non-faces and removes them from the face candidates selected by the face detecting section 110 and a skin tracker section 114 for tracking a face region after the non-face judgment. When the assumed distance between the face detector and the face as computed from the input image and the measured distance as measured by a distance sensor show a large difference, when the color variance of the face candidate is small, when the occupancy ratio of the skin color region is large and when the change in the size of the face region is large after the elapse of a predetermined time, the non-face judging section 120 judges such face candidates as non-faces and removes them from the face candidates.
Owner:SONY CORP

Imaging based symptomatic classification and cardiovascular stroke risk score estimation

Characterization of carotid atherosclerosis and classification of plaque into symptomatic or asymptomatic along with the risk score estimation are key steps necessary for allowing the vascular surgeons to decide if the patient has to definitely undergo risky treatment procedures that are needed to unblock the stenosis. This application describes a statistical (a) Computer Aided Diagnostic (CAD) technique for symptomatic versus asymptomatic plaque automated classification of carotid ultrasound images and (b) presents a cardiovascular stroke risk score computation. We demonstrate this for longitudinal Ultrasound, CT, MR modalities and extendable to 3D carotid Ultrasound. The on-line system consists of Atherosclerotic Wall Region estimation using AtheroEdge™ for longitudinal Ultrasound or Athero-CTView™ for CT or Athero-MRView from MR. This greyscale Wall Region is then fed to a feature extraction processor which computes: (a) Higher Order Spectra; (b) Discrete Wavelet Transform (DWT); (c) Texture and (d) Wall Variability. The output of the Feature Processor is fed to the Classifier which is trained off-line from the Database of similar Atherosclerotic Wall Region images. The off-line Classifier is trained from the significant features from (a) Higher Order Spectra; (b) Discrete Wavelet Transform (DWT); (c) Texture and (d) Wall Variability, selected using t-test. Symptomatic ground truth information about the training patients is drawn from cross modality imaging such as CT or MR or 3D ultrasound in the form of 0 or 1. Support Vector Machine (SVM) supervised classifier of varying kernel functions is used off-line for training. The Atheromatic™ system is also demonstrated for Radial Basis Probabilistic Neural Network (RBPNN), or Nearest Neighbor (KNN) classifier or Decision Trees (DT) Classifier for symptomatic versus asymptomatic plaque automated classification. The obtained training parameters are then used to evaluate the test set. The system also yields the cardiovascular stroke risk score value on the basis of the four set of wall features.
Owner:SURI JASJIT S

Rolling bearing fault diagnosis method in various working conditions based on feature transfer learning

The present invention provides a rolling bearing fault diagnosis method in various working conditions based on feature transfer learning, and relates to the field of fault diagnosis. The objective ofthe invention is to solve the problem that a rolling bearing, especially to various working conditions, is low in accuracy of diagnosis. The method comprise the steps of: employing a VMD (VariationalMode Decomposition) to perform decomposition of vibration signals of a rolling bearing in each state to obtain a series of intrinsic mode functions, performing singular value decomposition of a matrixformed by the intrinsic mode functions to solve a singular value or a singular value entropy, combining time domain features and frequency domain features of the vibration signals to construct a multi-feature set; introducing a semisupervised transfer component analysis method to perform multinuclear construction of a kernel function thereof, sample features of different working conditions are commonly mapped to a shared reproducing kernel Hilbert space so as to improve the data intra-class compactness and the inter-class differentiation; and employing the maximum mean discrepancy embedding to select more efficient data as a source domain, inputting source domain feature samples into a SVM (Support Vector Machine) for training, and testing target domain feature samples after mapping. Therolling bearing fault diagnosis method in various working conditions has higher accuracy in the rolling bearing multi-state classification in various working conditions.
Owner:HARBIN UNIV OF SCI & TECH

Method and system for authenticating shielded face

The invention discloses a method and a system for authenticating a shielded face, wherein the method comprises the following steps: S1) collecting a face video image; S2) preprocessing the collected face video image; S3) performing detection calculation on the shielded face, evaluating a position of a face image by utilizing a three-frame difference method according to motion information of a video sequence, and further confirming the position of the face according to an Adaboost algorithm; and S4) performing authenticating calculation on the shielded face, dividing a face sample into a plurality of sub-blocks, performing shielding distinguishment on the sub-blocks of the face by adopting a SVM(Support Vector Machine) binary algorithm combined with a supervising 1-NN k-Nearest neighbor method, if the sub-blocks are shielded, directly abandoning the sub-blocks, and if the sub-blocks are not shielded, extracting a corresponding LBP (Length Between Perpendiculars) textural feature vector for performing weighting identification, and then using a classifier based on a rectangular projection method to reduce feature matching times. According to the method for authenticating the shielded face, the detection rate and the detection speed for the local shielded face are effectively increased.
Owner:SUZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products