Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

20788 results about "Video image" patented technology

Auto-exposure method using continuous video frames under controlled illumination

An adaptive strobe illumination control process for use in a digital image capture and processing system. In general, the process involves: (i) illuminating an object in the field of view (FOV) with several different pulses of strobe (i.e. stroboscopic) illumination over a pair of consecutive video image frames; (ii) detecting digital images of the illuminated object over these consecutive image frames; and (iii) decode processing the digital images in an effort to read a code symbol graphically encoded therein. In a first illustrative embodiment, upon failure to read a code symbol graphically encoded in one of the first and second images, these digital images are analyzed in real-time, and based on the results of this real-time image analysis, the exposure time (i.e. photonic integration time interval) is automatically adjusted during subsequent image frames (i.e. image acquisition cycles) according to the principles of the present disclosure. In a second illustrative embodiment, upon failure to read a code symbol graphically encoded in one of the first and second images, these digital images are analyzed in real-time, and based on the results of this real-time image analysis, the energy level of the strobe illumination is automatically adjusted during subsequent image frames (i.e. image acquisition cycles) according to the principles of the present disclosure.
Owner:METROLOGIC INSTR

System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs

A system and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs of a system user. The system comprises a computer-readable memory, a video camera for generating video signals indicative of the gestures of the system user and an interaction area surrounding the system user, and a video image display. The video image display is positioned in front of the system user. The system further comprises a microprocessor for processing the video signals, in accordance with a program stored in the computer-readable memory, to determine the three-dimensional positions of the body and principle body parts of the system user. The microprocessor constructs three-dimensional images of the system user and interaction area on the video image display based upon the three-dimensional positions of the body and principle body parts of the system user. The video image display shows three-dimensional graphical objects within the virtual reality environment, and movement by the system user permits apparent movement of the three-dimensional objects displayed on the video image display so that the system user appears to move throughout the virtual reality environment.
Owner:PHILIPS ELECTRONICS NORTH AMERICA

Method and apparatus for calibration-free eye tracking

A system and method for eye gaze tracking in human or animal subjects without calibration of cameras, specific measurements of eye geometries or the tracking of a cursor image on a screen by the subject through a known trajectory. The preferred embodiment includes one uncalibrated camera for acquiring video images of the subject's eye(s) and optionally having an on-axis illuminator, and a surface, object, or visual scene with embedded off-axis illuminator markers. The off-axis markers are reflected on the corneal surface of the subject's eyes as glints. The glints indicate the distance between the point of gaze in the surface, object, or visual scene and the corresponding marker on the surface, object, or visual scene. The marker that causes a glint to appear in the center of the subject's pupil is determined to be located on the line of regard of the subject's eye, and to intersect with the point of gaze. Point of gaze on the surface, object, or visual scene is calculated as follows. First, by determining which marker glints, as provided by the corneal reflections of the markers, are closest to the center of the pupil in either or both of the subject's eyes. This subset of glints forms a region of interest (ROI). Second, by determining the gaze vector (relative angular or Cartesian distance to the pupil center) for each of the glints in the ROI. Third, by relating each glint in the ROI to the location or identification (ID) of a corresponding marker on the surface, object, or visual scene observed by the eyes. Fourth, by interpolating the known locations of each these markers on the surface, object, or visual scene, according to the relative angular distance of their corresponding glints to the pupil center.
Owner:CHENG DANIEL +3

Method and apparatus for calibration-free eye tracking using multiple glints or surface reflections

A system and method for eye gaze tracking in human or animal subjects without calibration of cameras, specific measurements of eye geometries or the tracking of a cursor image on a screen by the subject through a known trajectory. The preferred embodiment includes one uncalibrated camera for acquiring video images of the subject's eye(s) and optionally having an on-axis illuminator, and a surface, object, or visual scene with embedded off-axis illuminator markers. The off-axis markers are reflected on the corneal surface of the subject's eyes as glints. The glints indicate the distance between the point of gaze in the surface, object, or visual scene and the corresponding marker on the surface, object, or visual scene. The marker that causes a glint to appear in the center of the subject's pupil is determined to be located on the line of regard of the subject's eye, and to intersect with the point of gaze. Point of gaze on the surface, object, or visual scene is calculated as follows. First, by determining which marker glints, as provided by the corneal reflections of the markers, are closest to the center of the pupil in either or both of the subject's eyes. This subset of glints forms a region of interest (ROI). Second, by determining the gaze vector (relative angular or cartesian distance to the pupil center) for each of the glints in the ROI. Third, by relating each glint in the ROI to the location or identification (ID) of a corresponding marker on the surface, object, or visual scene observed by the eyes. Fourth, by interpolating the known locations of each these markers on the surface, object, or visual scene, according to the relative angular distance of their corresponding glints to the pupil center.
Owner:CHENG DANIEL +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products