Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3220results about "Recording carrier details" patented technology

Stereoscopic video recording method, stereoscopic video recording medium, stereoscopic video reproducing method, stereoscopic video recording apparatus, and stereoscopic video reproducing apparatus

An object of the present invention is to provide a stereoscopic video recording method, a stereoscopic video recording medium, a stereoscopic video reproducing method, a stereoscopic video recording apparatus, and a stereoscopic video reproducing apparatus that are capable of more optimally performing recording and reproduction of stereoscopic video. According to one solving means of the present invention, a stereoscopic video recording method records, in a recording medium, stereoscopic video including left-eye images (2) and right-eye images (1) utilizing parallax information, by using a stereoscopic video recording apparatus (6). From video content that contains stereoscopic images, the method grasps the amount of variation in parallactic angle having a given or larger value, a variation time that the variation in parallactic angle takes, and the number of times that the variation in parallactic angle occurs. The method then calculates an evaluation value that corresponds to the degree of eye fatigue on the basis of the amount of variation, the variation time, and the number of times of the variation, encodes the video content in such a manner that the evaluation value is within a given range, and records the encoded video content in the recording medium.

User interface for television schedule system

Screen (10) for a user interface of a television schedule system and process consists of an array (24) of irregular cells (26), which vary in length, corresponding to different television program lengths of one half hour to one-and-one half hours or more. The array is arranged as three columns (28) of one-half hour in duration, and twelve rows (30) of program listings. Some of the program listings overlap two or more of the columns (28) because of their length. Because of the widely varying length of the cells (26), if a conventional cursor used to select a cell location were to simply step from one cell to another, the result would be abrupt changes in the screen (10) as the cursor moved from a cell (26) of several hours length to an adjacent cell in the same row. An effective way of taming the motion is to assume that behind every array (24) is an underlying array of regular cells. By restricting cursor movements to the regular cells, abrupt screen changes will be avoided. With the cursor (32), the entire cell (26) is 3-D highlighted, using a conventional offset shadow (34). The offset shadow (34) is a black bar that underlines the entire cell and wraps around the right edge of the cell. To tag the underlying position-which defines where the cursor (32) is and thus, where it will move next-portions (36) of the black bar outside the current underlying position are segmented, while the current position is painted solid.

Method and apparatus for exchanging event information between computer systems that reduce perceived lag times by subtracting actual lag times from event playback time

Mechanisms and techniques provide the system that allows a sending computer system to capture and store event information related to events that transpire on a sending computer system in event batches. The event information can include event functionality related to event object in the timestamp related to the event. Periodically, in response to the occurrence of the batch transfer condition, the sending computer system transmits an event batch monthly computer network for receipt by a receiving computer system. The event batch may be processed through a collaboration adapter on the networks while prior to being send to the receiving computer system. Upon receipt of an event batch at the receiving computer system, the receiving computer system can compute a lag time required to receive the event batch. The receiving computer system can then recreate events based on the event information in the event batches while compensating for network lag time incurred during transmission of the event batch between a sending and receiving computer systems. By compensating for network lag during the recreation or playback of events, the system of the invention avoids the receiving computer system from reproducing events in a choppy or discontinuous manner or from getting left behind during event recreation due to accumulations of network lag time.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products