Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

38626 results about "Imaging processing" patented technology

Freebase(0.00 / 0 votes)Rate this definition: Image processing. In imaging science, image processing is any form of signal processing for which the input is an image, such as a photograph or video frame; the output of image processing may be either an image or a set of characteristics or parameters related to the image.

Data processing system and method

A powerful, scaleable, and reconfigurable image processing system and method of processing data therein is described. This general purpose, reconfigurable engine with toroidal topology, distributed memory, and wide bandwidth I/O are capable of solving real applications at real-time speeds. The reconfigurable image processing system can be optimized to efficiently perform specialized computations, such as real-time video and audio processing. This reconfigurable image processing system provides high performance via high computational density, high memory bandwidth, and high I/O bandwidth. Generally, the reconfigurable image processing system and its control structure include a homogeneous array of 16 field programmable gate arrays (FPGA) and 16 static random access memories (SRAM) arranged in a partial torus configuration. The reconfigurable image processing system also includes a PCI bus interface chip, a clock control chip, and a datapath chip. It can be implemented in a single board. It receives data from its external environment, computes correspondence, and uses the results of the correspondence computations for various post-processing industrial applications. The reconfigurable image processing system determines correspondence by using non-parametric local transforms followed by correlation. These non-parametric local transforms include the census and rank transforms. Other embodiments involve a combination of correspondence, rectification, a left-right consistency check, and the application of an interest operator.

Apparatus and method for optimized compression of interlaced motion images

An interlaced image processing module and corresponding method facilitate improved processing of interlaced motion images. In one embodiment, the interlaced image processing module receives image data frames having interlaced first and second fields and produces a reference field and error field. The reference field corresponds to the still image content of the interlaced frame, whereas the error field corresponds to the motion content of the interlaced frame, particularly the motion between fields. Motion between fields is thus represented in the error field, without redundant representation of the still image content provided by the first field. Where there is little motion between fields, the error terms will be small so the predictor preserves the coding efficiency provided by any auto-correlation in the image. Further, the interlaced image processing method does not rely upon pixel group classification, and thus avoids classification errors, and the loss of coding efficiency from still image content in motion classified blocks. Finally, problems presented by relative motion between fields are avoided, as are local artifacts. Another embodiment transforms the interlaced fields into frame data having a high frequency field and a low frequency field.
Owner:QUVIS +1

Multi-sensor integration for a vehicle

A sensor system for use in a vehicle that integrates sensor data from more than one sensor in an effort to facilitate collision avoidance and other types of sensor-related processing. The system include external sensors for capturing sensor data external to the vehicle. External sensors can include sensors of a wide variety of different sensor types, including radar, image processing, ultrasonic, infrared, and other sensor types. Each external sensor can be configured to focus on a particular sensor zone external to the vehicle. Each external sensor can also be configured to focus primarily on particular types of potential obstacles and obstructions based on the particular characteristics of the sensor zone and sensor type. All sensor data can be integrated in a comprehensive manner by a threat assessment subsystem within the sensor system. The system is not limited to sensor data from external sensors. Internal sensors can be used to capture internal sensor data, such a vehicle characteristics, user attributes, and other types of interior information. Moreover, the sensor system can also include an information sharing subsystem of exchanging information with other vehicle sensor systems or for exchanging information with non-vehicle systems such as a non-movable highway sensor system configured to transmit and receive information relating to traffic, weather, construction, and other conditions. The sensor system can potentially integrate data from all different sources in a comprehensive and integrated manner. The system can integrate information by assigning particular weights to particular determinations by particular sensors.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products