Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1265results about How to "Increase frame rate" patented technology

System and method for x-ray fluoroscopic imaging

A system for x-ray fluoroscopic imaging of bodily tissue in which a scintillation screen and a charge coupled device (CCD) is used to accurately image selected tissue. An x-ray source generates x-rays which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen re-radiates a spatial intensity pattern corresponding to the image, the pattern being detected by the CCD sensor. In a preferred embodiment the imager uses four 8×8-cm three-side buttable CCDs coupled to a CsI:T1 scintillator by straight (non-tapering) fiberoptics and tiled to achieve a field of view (FOV) of 16×16-cm at the image plane. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The imaging system can be operated in a plurality of pixel pitch modes such as 78, 156 or 234-μm pixel pitch modes. The CCD sensor may also provide multi-resolution imaging. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. Other preferred embodiments may include each image being directed on flat panel imagers made from but not limited to, amorphous silicon and / or amorphous selenium to generate individual electronic representations of the separate images used for diagnostic or therapeutic applications.
Owner:UNIV OF MASSACHUSETTS MEDICAL CENT

Method and apparatus for stereoscopic display using column interleaved data with digital light processing

The invention has two main embodiments, a first called column switching and blanking and a second embodiment called doubling. The first embodiment is a projector for displaying a stereoscopic image with projector using one or more digital micromirror devices positioned into a plurality of columns and rows. The projector itself includes a light source, an optical system, a video processing system and a data system for driving the micromirror devices. The data subsystem provides separate data to a plurality of column pairs of the micromirrors. The projector includes a stereoscopic control circuit having a first state of the control circuit for inputting a first eye view of the stereoscopic image and causing the micromirrors of a first column of each column pair to be in various on and off states during said first eye view of said stereoscopic image and for causing all of said micromirrors of a second column of each column pair to be in an off state during said first eye view of said stereoscopic image. A second state of the control circuit is used for inputting a second eye view of the stereoscopic image and causes the micromirrors of the second column of each column pair to be in various on and off states during the second eye view of the stereoscopic image and for causing all of the micromirrors of the first column of each column pair to be in an off state during the second eye view of said stereoscopic image. The second embodiment is a projector for displaying a stereoscopic image with the projector using one or more digital micromirror devices positioned into a plurality of columns and rows. The projector includes a light source, an optical system, a video processing system and a data system for driving said micromirror devices. The data subsystem provides separate data to a plurality of column pairs of the micromirrors. The projector includes a stereoscopic control circuit having a first state for inputting a first eye view of the stereoscopic image and causing each micromirror of each column pair to be in various but identical on and off states during said first eye view of said stereoscopic image. A second state of the control circuit for inputs a second eye view of the stereoscopic image and causes each micromirror of each column pair to be in various but identical on and off states during the second eye view of the stereoscopic image.
Owner:DIVELBISS ADAM W +1

Ultrasound imaging system and method based on simultaneous multiple transmit-focusing using weighted orthogonal chirp signals

The present invention discloses an ultrasound imaging system and method based on simultaneous multiple transmit-focusing using the weighted orthogonal chirp signals so that resolution of an ultrasound image is enhanced without sacrifice in the frame rate. The ultrasound imaging system according to the present invention includes: a storing means for storing weighted orthogonal signals including N number of orthogonal codes wherein the orthogonal codes are orthogonal to each other; a transmitter for transmitting simultaneously the weighted orthogonal signals as ultrasound transmission signals to corresponding N number of focal points within the target object; a receiver for receiving signals reflected from the N number of focal points corresponding to the transmitted ultrasound signals; a pulse-compressor for pulse-compressing with respect to each orthogonal code by extracting the stored N number of orthogonal codes from the reflected signals; a producer for producing receive-focused signals from the pulse-compressed signals; and a display for displaying the receive-focused signals by processing them. As a result, transmission signals are simultaneously transmitted to the plurality of focal points and received signals are separated on reception, thereby improving resolution without sacrifice in the frame rate.
Owner:MEDISON CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products