Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1902 results about "Chirp" patented technology

A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. It is commonly used in sonar, radar, and laser, but has other applications, such as in spread-spectrum communications.

Dynamic equalizer

A dynamic equalization system 12 for use in audio reproduction systems. The apparatus includes a chirp tone generator 38 which produces a tone having multiple frequencies. The chirp tone is broadcast into the listening space 10 from a transducer 14. The broadcast chirp tone is monitored by a second transducer 22 at the listening position to produce a received chirp tone. The received tone and the original tone are compared in a coefficient computer 44 connected to a programmable equalizer 42. The equalizer 42 uses the signal from the coefficient computer to compensate for irregularities 47 in listening space 10 and transducer 14 to produce a substantially undistorted listening experience from source 28 in listening space 10. The first step of the method of the invention is generation of a chirp tone. The chirp tone includes multiple frequencies. The chirp tone is broadcast into the listening space from a transducer placed at the selected transducer position. The broadcast chirp tone is next monitored by a transducer at the listening position to produce a received chirp tone. The received tone is then compared to the generated chirp tone and differences noted. The differences are used to program an equalizer for correction of sound. The process is done for each position where a transducer is located. Finally, sound from a program source is routed through the equalizer to the transducers for a corrected sound.
Owner:VNS PORTFOLIO LLC

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Wavelength division multiplexing source using multifunctional filters

This invention provides a system that combines a wavelength multiplexer with an FM discriminator for chirp reduction and wavelength locker in a filter to produce a wavelength division multiplexed signal with reduced chirp. A partially frequency modulation laser signal is converted into a substantially amplitude modulation laser signal. This conversion increases the extinction ratio of the input signal and further reduces the chirp. A wavelength division multiplexing (WDM) method is used for transmitting high capacity information through fiber optics systems where digital information is carried on separate wavelengths through the same fiber. Separate transmitters normally generate their respective signals that are transmitted at different wavelengths. These signals are then combined using a wavelength multiplexer to transmit the high capacity information through the fiber optic system. Various technologies can be used to multiplex the signals such as, for example, thin film filters, or arrayed waveguide gratings. In a WDM system, a wavelength locker may also be used that fixes the center wavelength of a transmitter to a reference. Wavelength lockers may include etalons or fiber gratings, either of which provides a reference wavelength. A control circuit typically compares the wavelength of the transmitter to the reference. An error signal adjusts the transmitter format wavelength by varying temperature or by other means to keep it locked to the reference wavelength.
Owner:II VI DELAWARE INC

Automotive radar with radio-frequency interference avoidance

An automotive radar system is disclosed that comprises an interference classifier 203 for determining a type of interference in a signal received from a multiuser environment. A sweep pattern comprising frequency sweep signals for a transmitted radar waveform is then advantageously determined in dependence upon the level of interference experienced by frequency sweep signals for the determined type of interference. The automated radar system comprises: a receiver 102 operable to receive a noise signal comprising burst noise, frequency chirp signals generated by one or more other users, or a combination thereof; a signal generator 109, 110 operable to generate a plurality of different frequency sweep signals; a signal combiner 104 operable to combine each frequency sweep signal with a received noise signal to generate a combined signal for each frequency sweep signal; an interference classifier 203 operable to identify combined signals corresponding to received noise signals comprising frequency chirp signals and to determine the noise levels of said combined signals corresponding to received noise signals comprising frequency chirp signals; and a selector 206 operable to select a plurality of frequency sweep signals in dependence upon the noise level determinations by the interference classifier 203 on the combined signals corresponding to received noise signals comprising frequency chirp signals; and a control unit 206 operable to determine a sweep pattern comprising the selected plurality of frequency sweep signals to be transmitted as an output radar waveform.
Owner:MITSUBISHI ELECTRIC CORP

Terse message networks

A tree-shaped mesh network is discussed which uses a mesh of wireless nodes that form a tree shaped network with one root node having a connection to an external network; chirp clients; and wireless network clients. Chirp clients comprise low cost chirp devices wherein said low cost chirp devices transmit short duration messages wherein transmission of said short duration messages are scheduled at preset transmission intervals. At least one wireless node of the mesh of wireless nodes is a designated chirp-aware node wherein said chirp-aware node sets the preset transmission intervals for chirp client communication by broadcasting a beacon prior to transmission by chirp clients and said chirp-aware node further comprises a bridge between the short duration messages and IP based devices wherein said bridge includes a wireless receiver to receive the short duration messages and is connected to said external network. The short duration messages are encapsulated into action frames, for onward transmission to other chirp aware routers. Each wireless node further comprises two logical radios and a service radio wherein each wireless node uplink and downlink operates on distinct non-conflicting frequencies. The wireless network clients communicate with the wireless nodes using node service radios.
Owner:DYNAMIC MESH NETWORKS

Pattern-dependent error counts for use in correcting operational parameters in an optical receiver

An optical transmission network includes an optical transmitter photonic integrated circuit (TxPIC) chip, utilized in an optical transmitter and has a plurality of monolithic modulated sources integrated for multiple signal channels on the same semiconductor chip is provided with channel equalization at the optical receiver side of the network that permits one or more such integrated modulated sources in the TxPIC chip to be out of specification thereby increasing the chip yield and reducing manufacturing costs in the deployment of such TxPIC chips. FEC error counts at the FEC decoder on the optical receiver side of the network includes counters that accumulate a plurality of bit pattern-dependent error counts based on different N-bit patterns in the received data bit stream. The accumulated counts of different N-bit patterns are utilized to provide for corrections to threshold and phase relative to the bit eye pattern as well as provided for weight coefficients for the optical receiver equalization system. The deployment of this type of equalization in a digital OEO REGEN network substantially reduces, if not eliminates, the need for dispersion compensating fiber (DCF) or EDFAs in an optical link of the network and enhances the optical receiver tolerance to chromatic dispersion (CD) so that an increase in chip yield is realized for TxPIC chips not operating with acceptable operational parameters, particularly with a desired frequency chirp parameter relative to at least one of the TxPIC modulated sources.
Owner:INFINERA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products