Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1497results about How to "Efficient transport" patented technology

Digital security multimedia sensor

A fully digital camera system provides high-resolution still image and streaming video signals via a network to a centralized, server supported security and surveillance system. The digital camera for collects an image from one or more image transducers, compressing the image and sending the compressed digital image signal to a receiving station over a digital network. A plurality of image transducers or sensors may be included in a single camera unit, providing array imaging such as full 360 degree panoramic imaging, universal or spherical imaging and field imaging by stacking or arranging the sensors in an array. The multiple images are then compressed and merged at the camera in the desired format to permit transmission of the least amount of data to accomplish the desired image transmission. The camera also employs, or connects to, a variety of sensors other than the traditional image sensor. Sensors for fire, smoke, sound, glass breakage, motion, panic buttons, and the like, may be embedded in or connected to the camera. Data captured by these sensors may be digitized, compressed, and networked to detect notable conditions. An internal microphone and associated signal processing system may be equipped with suitable signal processing algorithms for the purpose of detecting suitable acoustic events and their location. In addition, the camera is equipped with a pair of externally accessible terminals where an external sensor may be connected. In addition, the camera may be equipped with a short-range receiver that may detect the activation of a wireless ‘panic button’ carried by facility personnel. This ‘panic button’ may employ infrared, radio frequency (RF), ultrasonic, or other suitable methods to activate the camera's receiver.
Owner:PR NEWSWIRE

Sulfonated block copolymers, method for making same, and various uses for such block copolymers

The present invention is a, solid block copolymer comprising at least two polymer end blocks A and at least one polymer interior block B wherein each A block is a polymer block resistant to sulfonation and each B block is a polymer block susceptible to sulfonation, and wherein said A and B blocks do not contain any significant levels of olefinic unsaturation. Preferably, each A block comprising one or more segments selected from polymerized (i) para-substituted styrene monomers, (ii) ethylene, (iii) alpha olefins of 3 to 18 carbon atoms; (iv) hydrogenated 1,3-cyclodiene monomers, (v) hydrogenated monomers of conjugated dienes having a vinyl content less than 35 mol percent prior to hydrogenation, (vi) acrylic esters, (vii) methacrylic esters, and (viii) mixtures thereof; and each B block comprising segments of one or more polymerized vinyl aromatic monomers selected from (i) unsubstituted styrene monomers, (ii) ortho-substituted styrene monomers, (iii) meta-substituted styrene monomers, (iv) alpha-methylstyrene, (v) 1,1-diphenylethylene, (vi) 1,2-diphenylethylene and (vii) mixtures thereof. Also claimed are processes for making such block copolymers, and the various end uses and applications for such block copolymers.
Owner:KRATON POLYMERS US LLC

High efficiency heat removal system for rack mounted computer equipment

An efficient method of heat removal from rack mounted computer equipment, network gear and other electronic equipment, consisting of solid heat conducting components in direct contact with the heat generating sources. In particular, this invention is primarily focused on the ability to efficiently and effectively cool computer equipment in standard computer rack cabinets.
This invention utilizes a design that retains the general existing form factor of the rack mounted computer equipment, but uses direct contact heat transfer to a metal heat transfer conduit (Copper, Aluminum or other metal or efficient heat conducting material) contained within the computer equipment chassis. Furthermore, it is thermally coupled to an external rack mounted solid-to-fluid heat exchanger as an efficient method of heat transfer and removal. This is much more efficient than air as heat transfer medium which it the common method of heat removal from existing standardized rack mounted computer equipment.
This invention covers the design of the heat transfer components within the chassis of rack mounted computer server and the heat transfer system components external to the server within rack enclosure, as well as the external cooling system components necessary to connect to existing fluid based heat transfer and removal systems and processes.
Owner:NEUDORFER JULIUS

Vacuum pneumatic system for conveyance of ice

Vacuum pneumatic conveying apparatus and method are described to provide for a simple, economical, convenient (and preferably automatic) system for conveying ice on an as-required basis from a source such as an ice maker to one or more receptors at locations remote from that source. The system can be configured such that dispensing locations can be added or eliminated from the system or temporarily taken "off line" from the system without the need to change the basic system configuration or the central ice providing apparatus. The apparatus in various embodiments includes an ice source, a conveying conduit from the source to the receptor, a vacuum pump for moving the ice through the conduit by vacuum, and the receptor to collect the conveyed ice. The receptor may be an ice/beverage dispenser, an accumulator for retention and discharge to further devices, an intermediate storage dispenser, or an air lock device from where the ice can be projected over significant distances. Ice and vacuum may simultaneously be routed into different branched routes, utilizing a unique diverter/air shifter with the capability of providing routing to up to four different routes. Appropriate sensors and controllers, which may be microprocessor-based, may be used to automate the system. The entire system is easily cleanable. The system is advantageously used by restaurants, groceries, hotels and motels, hospitals, laboratories, and many other establishments where the providing of ice at various locations is desirable or required.
Owner:TEK SOLUTIONS

Mass spectrometry with multipole ion guides

Multipole ion guides configured with one or mote segments and positioned in a higher pressure vacuum region, are operated in mass to charge selection and ion fragmentation modes. Individual multipole ion guides are mounted in a linear assembly with no electrodes configured in between each multipole ion guide. At least a portion of each multipole ion guide mounted in a linear assembly resides in a vacuum region with higher background pressure. At least one ion guide can be configured to extend continuously from one vacuum stage into another. Individual sets of RF, +/− DC and secular frequency voltage supplies provide potentials to the rods of each multipole ion guide allowing the operation of ion transmission, ion trapping, mass to charge selection and ion fragmentation functions independently in each ion guide. The presence of higher background pressure along a portion of the multiple ion guide linear assembly allows the Collisional Induced Dissociation (CID) fragmentation of ions by axially accelerating ions from one multipole ion guide to an adjacent ion guide, analogous to a triple quadrupole function. A variety of MS and MS/MSn analysis functions can be achieved with a mass analyzer configured with multiple ion guide linear assembly operated in a higher background pressure.
Owner:ANALYTICA OF BRANFORD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products