Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

34876 results about "Transceiver" patented technology

A transceiver is a device comprising both a transmitter and a receiver that are combined and share common circuitry or a single housing.

Wireless communication networks for providing remote monitoring of devices

Wireless communication networks for monitoring and controlling a plurality of remote devices are provided. Briefly, one embodiment of a wireless communication network may comprise a plurality of wireless transceivers having unique identifiers. Each of the plurality of wireless transceivers may be configured to receive a sensor data signal from one of the plurality of remote devices and transmit an original data message using a predefined wireless communication protocol. The original data message may comprise the corresponding unique identifier and sensor data signal. Each of the plurality of wireless transceivers may be configured to receive the original data message transmitted by one of the other wireless transceivers and transmit a repeated data message using the predefined communication protocol. The repeated data message may include the sensor data signal and the corresponding unique identifier. Furthermore, at least one of the plurality of wireless transceivers may be further configured to provide the original data messages and the repeated data messages to a site controller connected to a wide area network. The site controller may be configured to manage communications between the wireless communication network and a host computer connected to the wide area network.
Owner:SIPCO

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

System and method for monitoring and controlling remote devices

The present system is directed to a computerized system for monitoring and controlling remote devices by transmitting data between the remote systems and a gateway interface via a packet message protocol system. The system comprises one or more remote sensors to be read and possibly one or more actuators to be remotely controlled. The remote sensor(s)/actuator(s) then interface with uniquely identified remote transceivers that transmit and/or receive data. If necessary in individual applications, signal repeaters may relay information between the transceiver(s) and the gateway interface. Communication links between the remote transceivers and the gateway interface are preferably wireless but may also be implemented via a mixture of wireless and wired communication links. To successfully communicate between the transceiver(s) and the gateway interface, the present invention receives a plurality of RF signal transmissions containing a packet protocol via RF signals that includes sender and receiver identifiers, a description of the packet itself, a message number, any commands, the data, and an error detector. In addition, the packet protocol can be easily integrated with alternate data communication protocols for use with systems other than the Internet.
Owner:SIPCO

System and method for locating and communicating with personnel and equipment in a facility

This invention provides a system and method for identifying, locating, authorizing by proximity and communicating with equipment and personnel in a facility that generally employs a series of limited range transceivers for location determination and a distributed wireless data network for data transfer. The system employs unique RF transceiver tags on personnel and equipment that are each uniquely identified and registered with a facility control application that oversees activities in the facility. The tags are tracked by RF communication based upon their proximity to one or more fixed-base networked access points and relays (which transfer location data by RF back to access points) within four range zones. Location data on all tags is uploaded periodically to a location server that interfaces with the facility control server. Tag data is monitored by the facility control server to track, authorize and deauthorize certain data transfers, movements and activities in accordance with rules established for each tag (or type of tag) within the facility control server's application. Wireless networking (WiFi, for example), in combination with the RF-derived location information, allows the facility control server to correlate and transmit data to staff in conjunction with location and proximity. WiFi can transmit authorizations, deauthorizations and general data based upon triggers established by proximity and location. Likewise, data can be transmitted over WiFi from readers etc. from personnel and equipment located and identified by the system.
Owner:TIDEWATER HLDG

System for long-term remote medical monitoring

A system for long-term remote medical monitoring is especially suitable for the medical supervision of astronauts onboard a space station. The system includes at least one autonomous sensor unit (SU) with a sensor (1) and transmit/receive electrodes (2) connected to a microchip (3) and mounted on a carrier (4) in the form of an adhesive bandage that can easily be applied to the skin of the subject astronaut (11). The system further includes a body transceiver (10) that is worn on the body of the subject and acts as a centralized transmitting and receiving unit, and a portable data logger (12). Medical data such as the pulse rate and the like, as well as environmental data such as the ambient surrounding air temperature, are sensed by respective allocated sensor units (SU) and transmitted from the sensor units as electrical signals via the skin and other body tissues of the subject (11) to the body transceiver (10). From the body transceiver (10), the data signals are further transmitted, for example by a radio or infrared transmission, to the data logger (12), where the data can be recorded, displayed, processed, or further transmitted via a satellite (14) to a base station (13) or a ground-based facility such as a hospital (15). Polling signals are also transmitted from the body transceiver (10) to the sensor units (SU) in a wireless manner through the skin and other body tissues of the subject.
Owner:ZUERICH MEDTECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products