Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1096 results about "Wave frequency" patented technology

The frequency of a wave refers to how often the particles of the medium vibrate when a wave passes through the medium. Frequency is a part of our common, everyday language. ... The speed of an object refers to how fast an object is moving and is usually expressed as the distance traveled per time of travel. For a wave, the speed is the distance traveled by a given point on the wave (such as a crest) in a given period of time.

Waveform adaptive ultra-wideband transmitter

A waveform adaptive transmitter that conditions and/or modulates the phase, frequency, bandwidth, amplitude and/or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and/or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and/or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and/or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Ultra wideband data transmission system and method

A data-modulated ultra wideband transmitter that modulates the phase, frequency, bandwidth, amplitude and / or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and / or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and / or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and / or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Wireless communication system

InactiveUS20060111047A1Efficient use ofLow frequency wireless internet access bandwidth isNetwork topologiesRepeater circuitsTransceiverWireless transceiver
A communication system providing wireless communication among wireless users through a number of cellular base stations. The system includes a connecting station with a millimeter wave wireless transceiver in communication with a fiber optic or high-speed cable communication network. The transceiver is adapted to communicate at millimeter wave frequencies higher than 60 GHz with another millimeter wave transceiver at one of the cellular base stations. Each of the base stations serves a separate communication cell. Each base station is equipped with a low frequency wireless transceiver for communicating with the wireless users within the cell at a radio frequency lower than 6 GHz and a millimeter wave wireless transceiver operating at a millimeter wave frequency higher than 60 GHz for communicating with another millimeter wave transceiver at another base stations or a millimeter wave transceiver at said at the connecting station. The base stations also are equipped with data transfer means for transferring data communicated through the low frequency transceiver to the millimeter wave wireless transceiver and for transferring data communicated through the millimeter wave wireless transceiver to the low frequency wireless transceiver. In preferred embodiments the system a part of a telephone system, an Internet system or a computer network.
Owner:TREX ENTERPRISES CORP

Wireless millimeter wave communication system with mobile base station

InactiveUS7912506B2Efficient use ofLow frequency wireless internet access bandwidth isNetwork topologiesSubstation equipmentTruck-trailerMillimeter wave communication systems
A communication system providing wireless communication among wireless users through a number of cellular base stations. At least one of the base stations is a mobile base station in which low and high speed wireless transceivers are mounted on a temporarily stationary mobile vehicle such as a truck trailer or a truck. The system includes at least one connecting station with a millimeter wave wireless transceiver in communication with a fiber optic or high-speed cable communication network. The transceiver is adapted to communicate at millimeter wave frequencies higher than 60 GHz with another millimeter wave transceiver at one of the cellular base stations. Each of the base stations serves a separate communication cell. Each base station is equipped with a low frequency wireless transceiver for communicating with the wireless users within the cell at a radio frequency lower than 6 GHz and a millimeter wave wireless transceiver operating at a millimeter wave frequency higher than 60 GHz for communicating with another millimeter wave transceiver at another base station or a millimeter wave transceiver at said at the connecting station. The base stations are also equipped with data transfer means for transferring data communicated through the low frequency wireless transceiver to the millimeter wave wireless transceiver and for transferring data communicated through the millimeter wave wireless transceiver to the low frequency wireless transceiver. In preferred embodiments the system is a part of a telephone system, an Internet system or a computer network.
Owner:TREX ENTERPRISES CORP

Harmonic amplitude measurement method and system of power signal

ActiveCN104502706AHigh precisionSuppression of aliasing interference componentsFrequency analysisPhase differenceHarmonic
The invention discloses a harmonic amplitude measurement method and system of a power signal. The method comprises the following steps: performing digital filtering on an imaginary vector sequence and a real vector sequence to generate an imaginary vector filter sequence and a real vector filter sequence; equally dividing the real vector filter sequence and the imaginary vector filter sequence into two sections of sequences to generate a real vector filter front-section sequence, a real vector filter rear-section sequence, an imaginary vector filter front-section sequence and an imaginary vector filter rear-section sequence respectively; integrating the real vector filter front-section sequence, the imaginary vector filter front-section sequence, the real vector filter rear-section sequence and the imaginary vector filter rear-section sequence in sequence to solve phase and phase difference; converting the phase difference and reference frequency into fundamental wave frequency of the power signal. The product of the fundamental wave frequency and a harmonic factor is used as the reference frequency to perform harmonic wave amplitude measurement. By implementing the method and the system, mixed frequency interference elements in the imaginary vector sequences and the real vector sequences can be inhibited to generate the harmonic wave amplitude with high precision.
Owner:ELECTRIC POWER RES INST OF GUANGDONG POWER GRID

Millimeter wave surface imaging radar system

InactiveUS20110199254A1Ample scan coverageReliable and effective FOD detectionAntenna arraysRadio wave reradiation/reflectionRadar imagingMillimetre wave
A short range millimeter wave surface imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view. Computer processor equipment compares the intensity of the receive millimeter radar signals for a pre-determined set of ranges and known directions of the transmit and receive beams as a function of time to produce a radar image of at least a desired portion of the field of view. In preferred embodiment the invention is mounted on a truck and adapted as a FOD finder system to detect and locate FOD on airport surfaces.
Owner:TREX AVIATION

Sinusoidal parameter measurement method and system of power signal

ActiveCN104502700AHigh precisionSuppression of aliasing interference componentsFrequency measurement arrangementDigital filterData sequences
The invention discloses a sinusoidal parameter measurement method and system of a power signal. The method comprises the following steps: performing preliminary measurement on fundamental wave frequency of a sampling data sequence to acquire preliminary fundamental wave frequency and multiplying a cosine function and a sine function of the preliminary fundamental wave frequency serving as the reference frequency by the sampling data sequence respectively to generate a real vector sequence and an imaginary vector sequence; performing digital filtering on the real vector sequence and the imaginary vector sequence to generate a real vector filter sequence and an imaginary vector filter sequence, and further integrating to generate a real vector integral value and an imaginary vector integral value; converting the real vector integral value and the imaginary vector integral value into corresponding sinusoidal parameters according to a preset sinusoidal parameter conversion rule. By implementing the method and the system, mixed frequency interference elements in the real vector sequence and the imaginary vector sequence can be inhibited to generate high-precision real vector and imaginary vector sequence integral values so as to finally obtain the sinusoidal parameters with higher precision.
Owner:ELECTRIC POWER RES INST OF GUANGDONG POWER GRID

Ultra-wideband receiver and transmitter

A waveform-adaptive ultra-wideband (UWB) transmitter and noise-tracking UWB receiver for use in communications, object detection and radar applications. In one embodiment, the output of an oscillator is gated by a low-level impulse generator either directly or through an optional filter. In a special case of that embodiment wherein the oscillator is zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, the low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The low-level impulse signal can be generated digitally. The UWB signal may be modulated to carry data, or may be used in object detection or ranging applications. The power amplifier may be gated to provide a power-efficient UWB transmitter. The UWB transmitter exhibits well defined and controllable spectral characteristics. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Mobile millimeter wave imaging radar system

InactiveUS20090135051A1Ample scan coverageEffective and reliable detectionAntenna arraysRadio wave reradiation/reflectionRadar systemsRadar imaging
A short range millimeter wave imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view. Computer processor equipment compares the intensity of the receive millimeter radar signals for a pre-determined set of ranges and known directions of the transmit and receive beams as a function of time to produce a radar image of at least a desired portion of the field of view. In preferred embodiment the invention is mounted on a truck and adapted as a FOD finder system to detect and locate FOD on airport surfaces.
Owner:TREX AVIATION

Silicon-based multi-layer cavity filter

The invention discloses a silicon-based multi-layer cavity filter, which is formed by superposing more than two medium layers up and down, wherein a through hole is formed in each medium layer; an internal wall metal layer which is formed by using a silicon micro-machining technology is arranged on an internal wall of the through hole; an intermediate metal layer which is formed by using the silicon micro-machining technology is arranged between the two adjacent medium layers; an inter-stage coupling window is arranged on the intermediate metal layer; an upper surface of a top medium layer and a lower surface of a bottom medium layer are respectively provided with a surface metal layer which is formed by using the silicon micro-machining technology; a metal layer which is contacted with the upper and lower surfaces of each medium layer and an internal wall metal layer form a resonant cavity; and an input tap lead is arranged on one resonant cavity, and an output tap lead is arranged on another resonant cavity. The silicon-based multi-layer cavity filter is small in size, has a shielding function, can meet the accuracy requirement of microwave/millimeter wave frequency band, and is free from encapsulation, good in device consistency, compatible with an integrated circuit process, easy to implement system integration and convenient to assemble and debug.
Owner:THE 13TH RES INST OF CHINA ELECTRONICS TECH GRP CORP

Millimeter wave frequency modulated continuous wave (FMCW) two-unit phased array distance and velocity measurement monolithic radar transceiver

The invention provides a millimeter wave frequency modulated continuous wave (FMCW) two-unit phased array distance and velocity measurement monolithic radar transceiver and belongs to the field of distance and velocity measurement radar transceivers. The millimeter wave FMCW two-unit phased array distance and velocity measurement monolithic radar transceiver is characterized by being formed by a FMCW transmitting module, a two-unit receiving module, a digital control module and a polarization generating module. The FMCW transmitting module is used for generating FMCW continuous-wave modulated signals, the continuous-wave modulated signals are sent out through an antenna after being amplified, the two-unit receiving module is used for processing signals reflected back from a target, the digital control module is used for controlling configurable amount in a system, sweep frequency cycle of FMCW modulation signals, sweep frequency bandwidth, signal transmitting power, gain of a receiving branch, bandwidth of a five-order Butterworth low-pass filter and phase shift value of a phase shifter can be configured, and the millimeter wave FMCW two-unit phased array distance and velocity measurement monolithic radar transceiver can be applied to detection of targets at close distance, far distance and different angles.
Owner:TSINGHUA UNIV

Millimeter wave tile-type phased-array antenna TR module

The invention relates to a millimeter wave tile-type phased-array antenna TR module, and the invention aims at providing a TR module realization scheme with advantages of high reliability, low cost and high density integration for a millimeter wave frequency range high-power active phased-array antenna (APAA). The millimeter wave tile-type phased-array antenna TR module can be realized by the following scheme: a radio-frequency signal is fed from a radio-frequency vertical interconnection interface of a common port of the lower cavity bottom of the TR module, after the radio-frequency signal is performed the power distribution through a power divider mounting on the surface of a multi-layer circuit board and the like, the radio-frequency signal is fed in a multichannel amplitude-phase control chip connected with every transmit-receive channel, after the radio-frequency signal is performed the second power distribution by the multichannel amplitude-phase control chip, the amplitude-phase information of each channel radio-frequency signal is adjusted according to the state of the external control code and is outputted to a TR multi-function chip, the signal is amplified and outputted to the final power amplifier until saturation, the signal is outputted to a power switch, the emission access is gated, and the signal is transmitted to antenna radio-frequency vertical interconnection interfaces arranged on two ends of the cavity on the TR module; when the TR module receives a work, the radio-frequency signal passes through the TR module in a reverse direction.
Owner:10TH RES INST OF CETC

Wireless millimeter wave communication system with mobile base station

A communication system providing wireless communication among wireless users through a number of cellular base stations. At least one of the base stations is a mobile base station in which low and high speed wireless transceivers are mounted on a temporarily stationary mobile vehicle such as a truck trailer or a truck. The system includes at least one connecting station with a millimeter wave wireless transceiver in communication with a fiber optic or high-speed cable communication network. The transceiver is adapted to communicate at millimeter wave frequencies higher than 60 GHz with another millimeter wave transceiver at one of the cellular base stations. Each of the base stations serves a separate communication cell. Each base station is equipped with a low frequency wireless transceiver for communicating with the wireless users within the cell at a radio frequency lower than 6 GHz and a millimeter wave wireless transceiver operating at a millimeter wave frequency higher than 60 GHz for communicating with another millimeter wave transceiver at another base station or a millimeter wave transceiver at said at the connecting station. The base stations are also equipped with data transfer means for transferring data communicated through the low frequency wireless transceiver to the millimeter wave wireless transceiver and for transferring data communicated through the millimeter wave wireless transceiver to the low frequency wireless transceiver. In preferred embodiments the system is a part of a telephone system, an Internet system or a computer network.
Owner:TREX ENTERPRISES CORP

Vertical coupled feeding structure applied to millimeter-wave microstrip antenna

The invention relates to a vertical coupled structure applied to a millimeter-wave microstrip antenna. The vertical coupled structure comprises microstrip patch antennae, a bottom-layer medium chip substrate, a substrate cavity forming structure, a grounding plate with a gap, a top-layer chip substrate and a coplanar waveguide adapter microstrip feeder line. The microstrip patch antennae are arranged on the bottom sides of the bottom-layer medium chip substrate and the top-layer chip substrate. The substrate cavity forming structure is formed by forming a cavity in the bottom-layer medium chip substrate. The coupling caliber of the gap is located between a bottom-layer medium chip and a top-layer chip. The coplanar waveguide adapter microstrip feeder line is arranged on the upper surface of the top-layer chip substrate. The interlayer vertical interconnection problem of the antenna and a radio-frequency circuit when working frequency is within a millimeter-wave frequency range can be solved by means of the vertical coupled structure. The vertical coupled structure has the advantages of being free of weld points and parasitic radiation and capable of obtaining an even radiation pattern, overcoming the adverse influence brought by a traditional single feed mode and design limitations and the like.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products