Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2138 results about "DC bias" patented technology

When describing a periodic function in the time domain, the DC bias, DC component, DC offset, or DC coefficient is the mean amplitude of the waveform. If the mean amplitude is zero, there is no DC bias. A waveform with no DC bias is known as a DC balanced or DC free waveform.

Waveform adaptive ultra-wideband transmitter

A waveform adaptive transmitter that conditions and/or modulates the phase, frequency, bandwidth, amplitude and/or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and/or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and/or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and/or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Ultra wideband data transmission system and method

A data-modulated ultra wideband transmitter that modulates the phase, frequency, bandwidth, amplitude and / or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and / or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and / or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and / or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Method for constructing radio frequency front end of multi-mode multi-band satellite navigation receiver and module thereof

The invention discloses a configurable multi-mode multi-band satellite navigation receiving method and a radio frequency front end module constructed by the method. The front end module can receive signals of satellite navigation and positioning systems such as a global positioning system (GPS), the Big Dipper, a Galileo positioning system and a global navigation satellite system (Glonass), and comprises a configurable low-noise amplifier (LNA) with a buffer and an active balun, a folding passive mixer with a configurable frequency synthesizer, a configurable multi-mode filter, an automatic gain control (AGC) amplifier, a direct-current bias circuit, and a multi-mode multi-band program controlled and coded on-off control word from a receiving system. The radio frequency front end module can meet the requirement of multi-band multi-mode work through the control word programmed by the receiving system, has a simple and reliable structure, does not need complicated time division multiplexing control system and off-chip module, has low cost and high flexibility, and improves the noise performance of the radio frequency front end of the whole receiver and multi-mode multi-band signal processing capacity; and a one-channel signal is input into the module, and the module outputs a two-channel differential signal. The receiver can be used for receiving and processing multi-mode satellite navigation signals asynchronously, and receiving and processing satellite navigation signals with the required mode in different time intervals according to the requirement.
Owner:杭州中科微电子有限公司

Ultra-wideband receiver and transmitter

A waveform-adaptive ultra-wideband (UWB) transmitter and noise-tracking UWB receiver for use in communications, object detection and radar applications. In one embodiment, the output of an oscillator is gated by a low-level impulse generator either directly or through an optional filter. In a special case of that embodiment wherein the oscillator is zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, the low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The low-level impulse signal can be generated digitally. The UWB signal may be modulated to carry data, or may be used in object detection or ranging applications. The power amplifier may be gated to provide a power-efficient UWB transmitter. The UWB transmitter exhibits well defined and controllable spectral characteristics. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Electronically tunable quad-band antennas for handset applications

An electronically tunable quad-band antenna which includes a tunable high band antenna tuned by at least one tunable varactor associated therewith; the tunable high band antenna further includes a substrate, a patch element on said substrate, at least one voltage tunable varactor associated with the patch element, a DC bias point on the patch element, an RF input on the patch element, and a temperature sensor associated with the high band pass antenna. Also included in a preferred embodiment of the electronically tunable quad-band antenna of the present invention is a tunable low band antenna tuned by at least one tunable varactor associated therewith, the tunable low band antenna further including a substrate, a patch element on said substrate, at least one voltage tunable varactor associated with said patch element, a DC bias point on said patch element, an RF input on said patch element, and a temperature sensor associated with said low band pass antenna.Also included is a controller receiving control data, and receiving output information from said low band antenna and output information from said high band antenna and controlling a first bias voltage for biasing the at least one voltage tunable varactor associated with the high band antenna and a second bias voltage for biasing the at least one voltage tunable varactor associated with the low band antenna. The bias voltages can be provided by a DC to DC converter regulator.
Owner:NXP USA INC

Bias circuit for transconductance amplifier

In low-voltage circuits, there is often insufficient voltage to use a current source to bias a transconductance amplifier stage. This is particularly true in mixers where a switching circuit must be stacked on top of the transconductance input stage. One way around this problem is to get "double-duty" out of the input differential pair, using it both for gain stage and for DC bias. This is done by AC coupling in a high-frequency input signal, while using a low-frequency, DC-coupled circuit to establish the proper bias level. One common technique is to use a simple current mirror scheme to establish the DC level. Proper biasing using this technique requires good matching of resistance. In some implementations of transconductance amplifiers, particularly those that use inductors as degeneration elements, series resistance of the inductor and interconnect resistance can cause significant errors in the bias current. This invention addresses that problem by using an operational amplifier with a current-sensing resistor and a low-frequency feedback loop to compensate automatically for any resistance errors. The operational amplifier drives the feedback voltage (generated in accordance with the sensed voltage at the current-sensing resistor and applied to one input of the operational amplifier) towards a reference voltage that is applied to the other input of the operational amplifier to bias the transistor(s) in the transconductance amplifier for desired operating conditions.
Owner:LUCENT TECH INC

Transflective liquid crystal display with reduced flicker

A method of reducing visible flicker in a transflective display device, having a plurality of pixels, each pixel comprising a transmissive sub-pixel and a reflective sub-pixel, is disclosed. The method comprises the steps of: driving the pixels with an alternating voltage; determining a first desired compensation voltage for the transmissive sub-pixels and a second desired compensation voltage for the reflective sub-pixels; deriving a common compensation voltage from said first desired compensation voltage and said second desired compensation voltage; and applying said common compensation voltage to both the transmissive and the reflective sub-pixels. Thus, the flicker resulting from a DC bias of the driving voltage is substantially reduced. In a preferred embodiment, the method further comprises the steps of: determining a lowest available frame frequency setting for which any remaining flicker is invisible; and setting a frame frequency at which the display is driven to said lowest available frame frequency. According to another embodiment, a backlight is manually controlled and the common compensation voltage is derived as a function of a mode of operation of the backlight. A transflective display device implementing the above methods is also disclosed.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Photon method and system for realizing microwave down-conversion and phase shift by using integrated devices

The invention provides a photon method and system for realizing microwave down-conversion and phase shift by using integrated devices, and belongs to the field of microwave photonics. Firstly, opticalcarriers generated by a laser are input to a double-parallel Mach-Zehnder modulator after passing through a polarization controller, a radio frequency signal is modulated by an upper arm sub-modulator, and carrier suppression double-sideband modulation is realized by DC bias; a local oscillator signal is modulated by a lower arm sub-modulator, and the carrier suppression double-sideband modulation is realized by the DC bias; the DC bias of a main intensity modulator is used for changing the phase difference between the radio frequency optical signal and the local oscillator optical signal. A-1 order optical sideband is filtered from an output carrier suppression double-sideband modulation optical signal by an optical bandpass filter, a +1 order optical sideband is retained, and the useless optical sideband is suppressed below the noise floor. Then, power amplification is performed on the optical signal to compensate the insertion loss of modulator and the filter. At last, a down-conversion signal subjected to phase shift is obtained by performing beat frequency by using a photodetector. A very pure frequency spectrum signal is output, and the performance of an integrated functionlink of down-conversion and phase shift is improved.
Owner:BEIJING UNIV OF TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products