Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4294 results about "Dc dc converter" patented technology

LED power control methods and apparatus

Methods and apparatus for providing and controlling power to loads including one or more LEDs. In one example, a controlled predetermined power is provided to a load without requiring any feedback information from the load (i.e., without monitoring a load voltage and / or load current). In another example, a “feed-forward” power driver for an LED-based light source combines the functionality of a DC-DC converter and a light source controller, and is configured to control the intensity of light generated by the light source based on modulating the average power delivered to the light source in a given time period, without monitoring and / or regulating the voltage or current provided to the light source. In various examples, significantly streamlined circuits having fewer components, higher overall power efficiencies, and smaller space requirements are realized. Based on various power driver configurations, lighting apparatus incorporating one or more power drivers for one or more LED-based loads may be implemented, and multiple such lighting apparatus may be coupled together to form a lighting network in which operating power is efficiently provided throughout the network.
Owner:SIGNIFY NORTH AMERICA CORP

High-performance solar photovoltaic ( PV) energy conversion system

The present invention focuses on the development of a high-performance solar photovoltaic (PV) energy conversion system. The power circuit of the invention is made of a two-stage circuit, connecting a step-up DC-DC converter and a full-bridge inverter in serial. The present invention uses an adaptive perturbation and observation method to increase tracking speed of maximum power position and at the same time reduces energy loss. In addition, the full-bridge inverter's output has to have the same phase with the utility power in order to achieve unit power factor and increase the system efficiency. The present invention uses voltage type current control full-bridge inverter to achieve the goal of merging into utility grid. The present invention provides an active Sun tracking system, by utilizing the character of changing in open circuit output voltage with Sun radiation strength to follow the Sun, and decreases the system cost and increases system effectiveness.
Owner:YUAN ZE UNIV

Active-clamp current-source push-pull dc-dc converter

Provided is a current-source push-pull DC-DC converter using an active clamp circuit for reusing energy of leakage inductances by not only diodes on a secondary side of a transformer being zero-current switched using a series-resonant full-wave rectifier, but also the active clamp circuit on a primary side of the transformer, which provides a discharge path of the energy stored in the leakage inductances, increases power conversion efficiency even for a wide input voltage range and reduces a switch voltage stress as compared to a conventional current-source push-pull circuit by operating even for a duty ratio below 0.5 by flowing a current of an input inductor through capacitors of the active clamp circuit when both main switches are off.
Owner:POSTECH ACAD IND FOUND

DC-DC converter with reduced electromagnetic interference

A DC-DC converter includes a variable frequency oscillator, a control system and a power train. The DC-DC converter is well suited for use in a cell phone. The control system uses the output of the oscillator to control the power train. The oscillator varies its frequency as a function of a pseudo random number generator, thereby reducing electromagnetic interference caused by ripple in the output of the DC-DC converter.
Owner:QORVO US INC

Multiple-Output DC-DC Converter

The invention relates to a DC / DC converter design. The converter requires only one single inductor to draw energy from one input source and distribute it to more than one outputs, employing Flexible-Order Power-Distributive Control (FOPDC). It include a single inductor, a number of power switches, comparators, only one error amplifier, a detecting circuit and a control block to regulate outputs. This converter can correctly regulate multiple outputs with fast transient response, low cross regulation, and effective switching frequency for each output. It can work in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Moreover, with FOPDC, future output extension is simple, making a shorter time-to-market process for next versions of the converter. The design can be applied to different types of DC-DC converter.
Owner:JDA TECH

Circuit apparatus for transformerless conversion of an electric direct voltage into an alternating voltage

In a circuit apparatus for transformerless conversion of an electric direct voltage of a two-pole direct voltage source (1) connected to ground having a first voltage pole (+) and a second voltage pole (−) into an alternating voltage, hazardous capacitive leakage currents are avoided by connecting the direct voltage source (1) to ground and the DC-AC converter (400) is operated at a controlled intermediate circuit voltage, a DC-DC converter stage (300) being connected between the direct voltage source (1) and the DC-AC converter (400), said DC-DC converter stage providing at its output a + / − voltage that is symmetrical with respect to the grounding point, two series-connected capacitors (41, 42) having the same polarity and being connected to ground at their connecting point (V) and controlled are charged by two buck-boost choppers (100, 200) connected one behind the other.
Owner:SMA SOLAR TECH AG

Multi-cellular photovoltaic panel system with dc-dc conversion replicated for groups of cells in series of each panel and photovoltaic panel structure

A photovoltaic energy conversion system includes a distributed control structure for groups of cells of each multi-cellular panel, the components of which are entirely physically integrated in the photovoltaic panel. Each multi-cellular photovoltaic panel has a DC bus, supplied in parallel by a plurality of DC-DC converters, each provided with a controller that controls the working point of the photovoltaic cells coupled to the input of the DC-DC converter for a maximum yield of electric power by implementing a relatively simple MPPT algorithm. The controller includes a logic circuit and A / D converters of analog signals representing the input voltage and the input current generated by the group of cells that is coupled to the input of the DC-DC converter and optionally also of the output voltage of the converter, and a relatively simple D / A converter of the drive control signal of the power switch of the DC-DC converter.
Owner:STMICROELECTRONICS SRL

Electronic Circuits for Driving Series Connected Light Emitting Diode Strings

Electronic circuits provide an error signal to control a regulated output voltage signal generated by a controllable DC-DC converter for driving one or more series connected strings of light emitting diodes.
Owner:ALLEGRO MICROSYSTEMS INC

Photovoltaic unit, a dc-dc converter therefor, and a method of operating the same

A photovoltaic unit is disclosed comprising a plurality of sub-units connected in series, each sub-unit having a main input and a main output, which main output is connected to the respective main input of a neighbouring sub-unit, each sub-unit further comprising a segment comprising one or more series-connected solar cells, and a supplementary power unit, wherein the supplementary power unit is configured to at least one of receive power from or supply power to the neighbouring sub-unit. The supplementary power unit is preferably a DC-DC converter, and arranged to exchange energy between neighbouring segments, without requiring a high-voltage connection across the complete string (of more than 2 segments). The converter may be inductive or capacitive.A DC-DC converter configured for use in such a unit is also disclosed, as is a method of controlling such a photovoltaic unit.
Owner:NXP BV

PFM-PWM DC-DC Converter Providing DC Offset Correction To PWM Error Amplifier And Equalizing Regulated Voltage Conditions When Transitioning Between PFM And PWM Modes

To prevent a voltage glitch in the regulated DC output voltage of a PWM / PFM DC-DC converter when switching between PFM and PMW modes, the error amplifier of the converter's PWM regulation path is provided with a DC voltage offset correction mechanism. This mechanism “zeros-out” DC voltage offsets that may be present in the voltage regulation path, thereby enabling the error amplifier to accurately regulate the converter's output voltage. When the converter transitions between PFM and PWM modes, the DC offset correction mechanism establishes initial conditions of the error amplifier that effectively ensure that the converter's regulated output voltage at the beginning of a new “switched-to” PWM mode cycle is DC offset-free.
Owner:INTERSIL INC

Bidirectional buck boost DC-DC converter, railway coach drive control system, and railway feeder system

According to the present invention, a bidirectional buck boost DC-DC converter can be obtained, in which power can flow bidirectionally from a primary side to a secondary side and from the secondary side to the primary side, regardless of a magnitude relation between a secondary-side voltage and a primary-side voltage in a state where different DC voltage sources are connected to the primary side and the secondary side in the DC-DC converter. A direction and a magnitude of the power can be automatically controlled to a desired value continuously on instantaneous value basis.
Owner:MITSUBISHI ELECTRIC CORP

Burst mode operation in a DC-DC converter

The present invention relates to a converter and a driving method thereof. The converter uses an input voltage to generate an output voltage by a main switch's switching and applies power to a load, senses the current flowing to the main switch to generate a sense voltage, uses a first voltage corresponding to the current applied to the load and a sawtooth waveform signal having a first frequency to control a group frequency of the burst mode, controls the main switch's turn-on timing, and uses the first voltage and the sense voltage to determine whether to turn off the main switch, thereby controlling the main switch's switching. The converter determines the start and end of the period for switching according to the result of comparing the first voltage and the sawtooth waveform signal. Therefore, a converter for having a constant group frequency, preventing audible noise, and preventing output voltage ripple, and a driving method thereof, are provided.
Owner:SEMICON COMPONENTS IND LLC

Dc-dc converters

Methods and apparatus for control of DC-DC converters. The DC-DC converter is operable so that the low side supply switch may be inhibited from turning on in a cycle following the high side supply switch turning off. Turn on of the low side switch is inhibited if the time between turn off of the high side switch and the inductor (L) current reaching zero is less than a predetermined duration. Inhibiting the low side switch from turning on can prevent the inductor current from going negative, which would reduce the efficiency of the converter. When turn on of the low side switch is inhibited the inductor current flows through a parallel path, such as a parasitic body diode associated with the low side switch, which allows current flow in one direction only.
Owner:CIRRUS LOGIC INC

Isolated DC-DC converters with high current capability

A DC-to-DC converter having a transformer with a primary and a tapped secondary, two serial output filter inductors connected parallel with the secondary, a center output filter inductor connected between the secondary tap and serial output inductors, two serially connected switches connected in parallel with the two output inductors for receiving a signal to control operation of the switches during steady state and an output load connected between the serial connection of the serial output inductors and serial switching devices. The transformer primary side connected with double-ended primary-side topologies. The transformer secondary and output filers configured to form a current tripler rectifier, current quadtupler rectifier or current N-tuper rectifier. The output filter inductors evenly share output current resulting in reduction of current and thermal stress during high current application and the rectification topology has simple driving for synchronous rectifier application without increasing complexity of control and operation of primary-side topologies.
Owner:UNIV OF CENT FLORIDA RES FOUND INC

Apparatus and method for high efficiency isolated power converter

A DC-DC converter apparatus comprising half or full bridge, two-stage resonant converter, which may include series resonant (inductor, capacitor) devices. An isolated transformer having primary and secondary winding supplies current to full-wave secondary stage-bridge through the use of primary winding resonant devices employing primary stage-bridge. The magnetizing of said devices employs zero-current, zero-voltage resonant-transition switching technology, which reduces switching losses at all switching frequencies to almost zero. The regulation of output voltage at all loads and input voltages achieved by the control of the switching frequency and the phase between signals for primary and secondary stages. The proper intermittent of the frequency and the phase allows achieving the value of efficiency up to 97%.
Owner:LUMENIS LTD

Method for activating a multi-string inverter for photovoltaic plants

A method of activating a Multi-String inverter for photovoltaic generators (1a, 1b) of a photovoltaic plant (6), the Multi-String inverter incorporating on the input side a separate DC-DC converter (2a, 2b) for each generator string (photovoltaic generator) (1a, 1b) and each output of the DC-DC converters (2a, 2b) being connected in parallel and to an input of a DC-AC converter (3) and the DC-AC converter (3) being connected with an alternating current mains (4) for feeding into the mains aims at improving efficiency. This is achieved in that one or several electrical variables, namely input current, input voltage and / or input power are measured at each DC-DC converter (2a, 2b) and at least one of the DC-DC converters (2a, 2b) changing its operating condition as a function of this measurement when a limit value and / or a range is exceeded in such a manner that its power loss is reduced so that the energy yield of the photovoltaic plant (6) is increased.
Owner:SMA SOLAR TECH AG

Determining dead times in switched-mode DC-DC converters

ActiveUS20060152204A1Improve efficiencySimpler and faster and accurate implementationEfficient power electronics conversionDc-dc conversionDc dc converterDead time
Systems, methods, and apparatuses are disclosed for determining dead-times in switched-mode DC-DC converters with synchronous rectifiers or other complementary switching devices. In one embodiment, for example, a controller for a DC-DC converter determines dead-times for switching devices of a synchronous rectifier or other complementary switching device of the converter in which a dead-time is derived from an output voltage or current that is already sensed and used in the output regulation of the converter. In another embodiment, a controller is provided for controlling a switched-mode DC-DC converter comprising a pair of power switches. The controller comprises an input, a reference generator, a comparator, a compensator, a dead-time sub-controller, and a modulator. In another embodiment, the controller may adjust the dead-times during the operation of the converter to adjust periodically and / or in response to changes in operating conditions. In addition, methods of determining dead-times of control signals for a switched-mode DC-DC converter comprising a pair of power switches and of controlling a DC-DC converter are also disclosed.
Owner:UNIV OF COLORADO THE REGENTS OF

Dc-dc converter

A non-isolated DC-DC converter that converts a voltage input to an input terminal to output a constant output voltage to a load terminal while switching control mode between a PWM mode and a VFM mode depending on a current output to the load terminal. The DC-DC converter includes an inductor, a switching circuit, and a control circuit. The inductor stores electric energy for supply to the load terminal. The switching circuit switches on and off current flow at a switching frequency to alternately charge and discharge the inductor. The control circuit increases an electric current flowing to the load terminal through the inductor per one operational cycle as the switching frequency decreases during VFM control mode operation.
Owner:RICOH ELECTRONIC DEVICES CO LTD

Core structure and interleaved DC-DC converter topology

There is disclosed a core structure with a very low profile, high power density and lower losses. The disclosed design allows for a larger core area where the DC fluxes are added, thereby reducing the air-gap requirements in the cores derived from low saturation density materials such as ferrites. The cellular nature of the design can be effectively employed in vertically packaged power converters and modules. Also disclosed is a DC-DC converter topology which preferably employs the disclosed core. N AC drive voltages drive N current doubler rectifiers (CDRs) in accordance with the symmetric modulation scheme; each CDR provides two rectified output currents to an output node. Each AC drive voltage has a switching period Ts. The drive voltages are phase-shifted by Ts / (2*N), such that the rectified output currents of the CDRs are interleaved, thereby reducing output voltage ripple.
Owner:MYPAQ HLDG LTD

Hybrid power supply and power management method thereof

The invention provides a power management method for a hybrid power supply, comprising providing a primary power source, providing a rechargeable battery, providing a DC-DC converter, acquiring an amount of the power stored in the rechargeable battery, and when the energy level of the rechargeable battery does not exceed a first predetermined value, the DC-DC converter controls the primary power source to output a first value of a first electrical parameter.
Owner:IND TECH RES INST

Circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply

A circuit that utilizes most of the energy stored in the bulk capacitor of an AC to DC or DC to DC converter power supply by providing an intermediate converter between a first stage boost converter and a DC-DC converter. When the bulk voltage starts to fall during the hold-up time, the intermediate converter boosts the falling voltage to maintain the regulated DC input to the DC to DC converter while reducing the operating range and increasing the operating duty cycle, so as to increase efficiency, reduce peak current and voltage stresses. The circuit also reduces the size of the output filter components and reduces the size of the bulk capacitance by up to half.
Owner:ASTEC INT LTD

Fuel cell based rechargable power pack system and associated methods for controlling same

A power pack system for charging a set of isolated batteries is provided. In an illustrative embodiment of the invention, a single fuel cell, a single DC-DC converter and a single system controller device comprises the power-generation side of the power pack. A set of switches is used to connect the power-generation side of the Power pack to one of the isolated batteries in the power pack, thereby recharging that particular battery in the battery power pack set. A battery protection and powerpath control device communicates with the system controller to determine which switches are to be closed depending upon which battery requires recharging. During normal operation the switches will follow the direction from the system controller. If a fault is detected by the battery protection circuit, the protection circuit will take priority and turn off the appropriate switch(es).
Owner:MTI MICROFUEL CELLS

Integrated magnetics for a DC-DC converter with flexible output inductor

An integrated magnetic assembly that allows the primary and secondary windings of a transformer and a separate inductor winding to be integrated on a unitary magnetic structure is disclosed. The unitary magnetic structure includes first, second, and third legs that are physically connected and magnetically coupled. The primary and secondary windings of the transformer can be formed on the third leg of the unitary magnetic structure. Alternatively, the primary and secondary windings can be split between the first and second legs. Thus, the primary winding includes first and second primary windings disposed on the first and second legs and the secondary winding includes first and second secondary windings disposed on the first and second legs. The inductor winding may also be formed either on the third leg or it may split into first and second inductor windings and disposed on the first and second legs. In addition, one or more legs may include an energy storage component such as an air gap. This integration of the primary and secondary windings and the inductor winding on the unitary magnetic structure advantageously decouples the inductor function from the transformer function and allows the more optimal design of both the inductor and the transformer. The unitary magnetic structure may be coupled to a full bridge, a half bridge, or a push pull voltage input source to form a DC—DC converter.
Owner:NORTHEASTERN UNIV

DC-DC converter

A DC-DC converter switches a semiconductor switch device for converting a DC voltage to a certain level and supplies the converted DC voltage to a load. The DC-DC converter is configured to be able to switch between a first feedback control mode and a second feedback control mode. The DC-DC converter selects the second feedback control mode when a load current flowing through the load is below a predetermined value. The DC-DC converter selects the first feedback control mode when a level of the DC voltage supplied to the load changes irrespective of a value of the load current.
Owner:FUJI ELECTRIC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products