Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

13975 results about "Electromagnetic interference" patented technology

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both man-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras (northern/southern lights). EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

Goniometer-based body-tracking device and method

A sensing system is provided for measuring various joints of a human body for applications for performance animation, biomechanical studies and general motion capture. One sensing device of the system is a linkage-based sensing structure comprising rigid links interconnected by revolute joints, where each joint angle is measured by a resistive bend sensor or other convenient goniometer. Such a linkage-based sensing structure is typically used for measuring joints of the body, such as the shoulders, hips, neck, back and forearm, which have more than a single rotary degree of freedom of movement. In one embodiment of the linkage-based sensing structure, a single long resistive bend sensor measures the angle of more that one revolute joint. The terminal ends of the linkage-based sensing structure are secured to the body such that movement of the joint is measured by the device. A second sensing device of the sensing system comprises a flat, flexible resistive bend sensor guided by a channel on an elastic garment. Such a flat sensing device is typically used to measure various other joints of the body which have primarily one degree of freedom of movement, such as the elbows, knees and ankles. Combining the two sensing devices as described, the sensing system has low sensor bulk at body extremities, yet accurately measures the multi-degree-of-freedom joints nearer the torso. Such a system can operate totally untethered, in real time, and without concern for electromagnetic interference or sensor occlusion.
Owner:IMMERSION CORPORATION

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring

InactiveUS7047054B2Easily and securely attachedLight couplingDiagnostic recording/measuringSensorsCapacitanceFiber
A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:CAS MEDICAL SYST

Zero-voltage switch flyback-type DC-DC power supply conversion device

The invention relates to a DC-DC power supply conversion device, in particular to a zero-voltage switch (ZVS) flyback-type DC-DC power supply conversion device with efficient conversion, efficient light-load conversion and low standby power consumption. An auxiliary switch and an absorption capacitor are additionally arranged on the flyback circuit; the auxiliary switch and the absorption capacitor are connected in series so as to form an auxiliary branch circuit; the auxiliary branch circuit can be connected in parallel to the two ends of the primary winding of a transformer or alternatively connected in parallel to the two ends of a primary-side switch; and the auxiliary switch is conductive for a determined period of time before the primary-side switch is conductive. Compared with the prior art, the energy of the circuit leakage inductor can be absorbed and transferred to the output terminal and a soft switch for realizing the primary-side switch, so that the invention can greatly improve the circuit efficiency; the parasitic oscillation caused by the leakage inductor can be suppressed, so that the EMI (electromagnetic interference) characteristics of the circuit can be improved; and the circuit can be controlled more easily, thereby improving the light-load circuit efficiency and reducing the idle-load energy loss.
Owner:DELTA ELECTRONICS SHANGHAI CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products