Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

15574 results about "Photovoltaic detectors" patented technology

Flex circuit shielded optical sensor

A flex circuit optical sensor has an integrated Faraday shield. A conductive trace layer disposed on a substrate is used to form a conductive grid which shields the face of a photodetector. A conductive ink layer is formed on a substrate side opposite the trace layer. The back and sides of the detector are shielded by flex circuit flaps that have the conductive ink layer but substantially exclude the trace layer so as to fold over and closely adhere to the detector body. The shielded substrate flaps advantageously eliminate a separate detector shield, which is typically fabricated with an etched copper part that must be attached to a flex circuit before mounting the detector.
Owner:JPMORGAN CHASE BANK NA

Interference detector for patient monitor

A system is disclosed for detecting and calculating the level of ambient and / or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and non-invasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
Owner:MASIMO CORP

Patient monitor for monitoring microcirculation

A patient monitor capable of measuring microcirculation at a tissue site includes a light source, a beam splitter, a photodetector and a patient monitor. Light emitted from the light source is split into a reference arm and a sample arm. The light in the sample arm is directed at a tissue site, such as an eyelid. The reflected light from the tissue site is interfered with the light from the reference arm. The photodetector measures the interference of the light from both the sample arm and the reference arm. The patient monitor uses the measurements from the photodetector to calculate the oxygen saturation at the tissue site and monitor the microcirculation at the tissue site.
Owner:MASIMO CORP

Apparatus for multiple camera devices and method of operating same

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:NEWPORT IMAGING CORP

Control of an optical fiber scanner

InactiveUS6845190B1Remove nonlinear behaviorRobust cancellationSurgeryEndoscopesOptical scannersPhotodetector
Controls for an optical scanner, such as a single fiber scanning endoscope (SFSE) that includes a resonating optical fiber and a single photodetector to produce large field of view, high-resolution images. A nonlinear control scheme with feedback linearization is employed in one type of control to accurately produce a desired scan. Open loop and closed loops controllers are applied to the nonlinear optical scanner of the SFSE. A closed loop control (no model) uses either phase locked loop and PID controllers, or a dual-phase lock-in amplifier and two PIDs for each axis controlled. Other forms of the control that employ a model use a frequency space tracking control, an error space tracking control, feedback linearizing controls, an adaptive control, and a sliding mode control.
Owner:UNIV OF WASHINGTON

Apparatus for multiple camera devices and method of operating same

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:INTELLECTUAL VENTURES II

Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates

A semiconductor component, selected from the group comprising a photodetector, a light emitting diode, an optical modulator and a waveguide. The semiconductor component comprises an Si substrate, an active region formed on said substrate, and an Si capping layer on said active region. In one embodiment the active region is a superlattice comprising alternating layers of Si1-yCy and Si1-x-yGexCy, with the atomic fraction y of the Si1-x-yGexCy layers being equal to or different from the atomic fraction y of the Si1-yCy layers. In another embodiment it is a superlattice comprising a plurality of periods of a three-layer structure comprising Si, Si1-yCy and Si1-xGex layers. In a third embodiment it is a superlattice comprising a plurality of periods of a three-layer structure comprising Si, Si1-yCy and Si1-x-yGexCy layers, with the atomic fraction y of the Si1-x-yGexCy layers being equal to or different from the atomic fraction y of the Si1-yCy layers. The components have faborable optical and electrical properties and are suitable for integration on a Si substrate.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV

Near infrared spectroscopy device with reusable portion

A NIRS sensor device for brain monitoring is small in size, provides reliable attachment to a patient, blocks ambient light, is easy to use, is hygienic, and supports data integration with surgical and monitoring systems. The sensor device is coupled to a remote near infrared light source via a hybrid cable. Since the light source is remotely located, a source adapted for providing high energy, short pulses can easily be used so that there is less chance of interference by superficial non-brain tissues and less interference from ambient light. In addition, the remote location avoids changes in output of local light sources experienced in the prior art during hypothermia procedures (e.g., bandwidth shifts in LEDs as a result of lowered temperature). The higher energy may be achieved by the use of laser diodes as opposed to locally-mounted LEDs typically used in the prior art. The sensor device is a two-piece design comprising a reusable portion containing the photodetector(s) and a disposable portion that receives the light from the reusable portion and bends it to direct the light into the brain.
Owner:TERUMO CARDIOVASCULAR SYST CORP

LED light communication system

An LED light and communication system includes at least one optical transceiver, the optical transceiver including a light support and a processor. The light support has a plurality of light emitting diodes and at least one photodetector attached thereto, the light emitting diodes receiving power from a power source. The processor is in communication with the light emitting diodes and the at least one photodetector, the processor capable of illuminating the light emitting diodes to simultaneously create at least one first light signal, and at least one second light signal, the first light signal being observable to the unaided eyes of an individual and the second light signal not being observable to the unaided eyes of the individual. The second light signal includes at least one data packet. The at least one data packet comprises global positioning system (GPS) location information.
Owner:FEDERAL LAW ENFORCEMENT DEV SERVICES

Two-part patch sensor for monitoring vital signs

A two-component monitoring device and system for monitoring blood pressure from a patient is disclosed herein. The two-component monitoring device includes a disposable component and a main component. The disposable component features: i) a backing structure having a first aperture; and ii) first and second electrodes, each electrode connected to the backing structure and including an electrical lead and a conductive electrode material, and configured to generate an electrical signal that passes through the electrical lead when the conductive electrode material contacts the patient. The main component includes: i) first and second connectors configured to connect to the first and second electrical leads to receive the first and second electrical signals; and ii) an optical component comprising a light source that generates optical radiation and a photodetector that detects the optical radiation. The optical component inserts into the first aperture of the disposable component. The main component optionally includes an acoustic sensor. The system utilizes a processing device, connected to the monitoring device by a cable which receives and processes a plurality of signals to determine real-time blood-pressure values for the patient.
Owner:SOTERA WIRELESS

Low bandgap, monolithic, multi-bandgap, optoelectronic devices

Low-bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Owner:ALLIANCE FOR SUSTAINABLE ENERGY

Camera Adapter Based Optical Imaging Apparatus

The invention describes several embodiments of an adapter which can make use of the devices in any commercially available digital cameras to accomplish different functions, such as a fundus camera, as a microscope or as an en-face optical coherence tomography (OCT) to produce constant depth OCT images or as a Fourier domain (channelled spectrum) optical coherence tomography to produce a reflectivity profile in the depth of an object or cross section OCT images, or depth resolved volumes. The invention admits addition of confocal detection and provides simultaneous measurements or imaging in at least two channels, confocal and OCT, where the confocal channel provides an en-face image simultaneous with the acquisition of OCT cross sections, to guide the acquisition as well as to be used subsequently in the visualisation of OCT images. Different technical solutions are provided for the assembly of one or two digital cameras which together with such adapters lead to modular and portable high resolution imaging systems which can accomplish various functions with a minimum of extra components while adapting the elements in the digital camera. The cost of such adapters is comparable with that of commercial digital cameras, i.e. the total cost of such assemblies of commercially digital cameras and dedicated adapters to accomplish high resolution imaging are at a fraction of the cost of dedicated stand alone instruments. Embodiments and methods are presented to employ colour cameras and their associated optical sources to deliver simultaneous signals using their colour sensor parts to provide spectroscopic information, phase shifting inferometry in one step, depth range extension, polarisation, angular measurements and spectroscopic Fourier domain (channelled spectrum) optical coherence tomography in as many spectral bands simultaneously as the number of colour parts of the photodetector sensor in the digital camera. In conjunction with simultaneous acquistion of a confocal image, at least 4 channels can simultaneously be provided using the three color parts of conventional color cameras to deliver three OCT images in addition to the confocal image.
Owner:UNIVERSITY OF KENT

LED array package with internal feedback and control

A packaged LED array for high temperature operation comprises a metal base, the metal base including an underlying thermal connection pad. One or more layers of ceramic overly the metal base. The array includes a plurality of LED dice, each LED die having electrodes. And, the LED thermally coupled to the metal base. A driver circuit is electrically connected to the LED die electrodes and controls the LED array current. An LED driver is mounted within the LED array package, and thermally coupled to the metal base. In a second embodiment, one or more of the LED dice can be switched from the driver to a measurement circuit and used as a photodetector to measure the light output of the LED array. The measured photodetector signal can further be used as a feedback signal to control the LED array light output.
Owner:LIGHTING SCI GROUP

High quality large area bulk non-polar or semipolar gallium based substrates and methods

A large area nitride crystal, comprising gallium and nitrogen, with a non-polar or semi-polar large-area face, is disclosed, along with a method for making. The crystal is useful as a substrate for a light emitting diode, a laser diode, a transistor, a photodetector, a solar cell, or for photoelectrochemical water splitting for hydrogen generation.
Owner:SORAA

Optical phased array lidar system and method of using same

A lidar-based system and method are used for the solid state beamforming and steering of laser beams using optical phased array (OPA) photonic integrated circuits (PICs) and the detection of laser beams using photodetectors. Transmitter and receiver electronics, power management electronics, control electronics, data conversion electronics and processing electronics are also included in the system and used in the method.Laser pulses beamformed by the OPA PIC reflect from objects in the field of view (FOV) of said OPA, and are detected by a detector or a set of detectors.A lidar system includes at least one lidar, and any subset and any number of complementary sensors, data processing / communication / storage modules, and a balance of system for supplying power, protecting, connecting, and mounting the components of said system.Direct correlation between the 3D point cloud generated by the lidar and the color images captured by an RGB (Red, Green, Blue) video camera can be achieved by using an optical beam splitter that sends optical signals simultaneously to both sensors.A lidar system may contain a plurality of lidar sensors, a lidar sensor may contain a plurality of optical transmitters, and an optical transmitter may contain a plurality of OPA PICs.
Owner:QUANERGY SOLUTIONS INC

Apparatus for multiple camera devices and method of operating same

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:OLSEN RICHARD IAN +8

Optical coherence tomography with 3d coherence scanning

Optical coherence tomography with 3D coherence scanning is disclosed, using at least three fibers (201, 202, 203) for object illumination and collection of backscattered light. Fiber tips (1, 2, 3) are located in a fiber tip plane (71) normal to the optical axis (72). Light beams emerging from the fibers overlap at an object (122) plane, a subset of intersections of the beams with the plane defining field of view (266) of the optical coherence tomography apparatus. Interference of light emitted and collected by the fibers creates a 3D fringe pattern. The 3D fringe pattern is scanned dynamically over the object by phase shift delays (102, 104) controlled remotely, near ends of the fibers opposite the tips of the fibers, and combined with light modulation. The dynamic fringe pattern is backscattered by the object, transmitted to a light processing system (108) such as a photo detector, and produces an AC signal on the output of the light processing system (108). Phase demodulation of the AC signal at selected frequencies and signal processing produce a measurement of a 3D profile of the object.
Owner:APPLIED SCI INNOVATIONS +1

Silicon-based visible and near-infrared optoelectric devices

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A / W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A / W for longer wavelengths, e.g., up to about 3.5 microns.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Computer interface employing a manipulated object with absolute pose detection component and a display

A system that has a remote control, e.g., a wand, equipped with a relative motion sensor that outputs data indicative of a change in position of the wand. The system also has one or more light sources and a photodetector that detects their light and outputs data indicative of the detected light. The system uses one or more controllers to determine the absolute position of the wand based on the data output by the relative motion sensor and by the photodetector. The data enables determination of the absolute pose of the wand, which includes the absolute position of a reference point chosen on the wand and the absolute orientation of the wand. To properly express the absolute parameters of position and/or orientation of the wand a reference location is chosen with respect to which the calculations are performed. The system is coupled to a display that shows an image defined by a first and second orthogonal axes such as two axes belonging to world coordinates (Xo,Yo,Zo). The one or more controllers are configured to generate signals that are a function of the absolute position of the wand in or along a third axis for rendering the display. To simplify the mapping of a real three-dimensional environment in which the wand is operated to the cyberspace of the application that the system is running, the third axis is preferably the third Cartesian coordinate axis of world coordinates (Xo,Yo,Zo).
Owner:ELECTRONICS SCRIPTING PRODS

Light absorption and filtering properties of vertically oriented semiconductor nano wires

A nanowire array is described herein. The nanowire array comprises a substrate and a plurality of nanowires extending essentially vertically from the substrate; wherein: each of the nanowires has uniform chemical along its entire length; a refractive index of the nanowires is at least two times of a refractive index of a cladding of the nanowires. This nanowire array is useful as a photodetector, a submicron color filter, a static color display or a dynamic color display.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Optical excitation/detection device and method for making same using fluidic self-assembly techniques

The disclosure is directed toward an optical excitation / detection device that includes an arrayed plurality of photodetectors and separately formed photoemitters, as well as a method for making such a device. A CMOS fabricated photodetector array including a plurality of individual photoreceptors is selectively etched back between photoreceptor locations to reveal a plurality of recessed regions having a certain geographic profile. A plurality of semiconductor blocks, each having light emitting capability and each having a certain geometric profile that is complementary in size and shape to the certain geometric profile of the recessed regions, are separately fabricated. These blocks are included within a fluid to form a slurry. The slurry is then flowed over the CMOS fabricated photodetector array in accordance with a fluidic self-assembly technique, and the included semiconductor blocks are individually deposited within each of the plurality of recessed regions in the CMOS fabricated photodetector array. The deposited blocks are then attached within the recessed regions to form the optical excitation / detection device from an arrayed plurality of photodetectors and separately formed photoemitters.
Owner:SANOFI AVENTIS DEUT GMBH

Patient identification using physiological sensor

A patient information tracking system is disclosed that implements a physiological sensor system used to acquire information related to the wearer of a physiological sensor. The sensor system includes a physiological sensor adapted to be attached to a patient and includes at least one emitter and a photodetector. The sensor system further includes a positioning element to position the sensor such that the at least one emitter is sufficiently proximate the detector to acquire information from an identification element worn by the patient. A method for using a physiological sensor system to acquire information related to the wearer of a sensor is also provided. The sensor may also include a securing portion configured to couple to the sensor portion of the wearer. The sensor may also include a security wire and a memory device for retaining the wearer's information.
Owner:MASIMO CORP

Group iii-nitride growth on silicon or silicon germanium substrates and method and devices therefor

A structure including a Si1-xGex substrate and a distributed Bragg reflector layer disposed directly onto the substrate. The distributed Bragg reflector layer includes a repeating pattern that includes at least one aluminum nitride layer and a second layer having the general formula AlyGa1-yN. Another aspect of the present invention is various devices including this structure. Another aspect of the present invention is directed to a method of forming such a structure comprising providing a Si1-xGex substrate and depositing a distributed Bragg reflector layer directly onto the substrate. Another aspect of the present invention is directed to a photodetector or photovoltaic cell device, including a Si1-xGex substrate device, a group III-nitride device and contacts to provide a conductive path for a current generated across at least one of the Si1-xGex substrate device and the group III-nitride device upon incident light.
Owner:NAVY U S A AS REPRESENTED BY THE SEC OF THE THE

Digital camera with integrated infrared (IR) response

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:INTELLECTUAL VENTURES II

Computer interface employing a manipulated object with absolute pose detection component and a display

A system that has a remote control, e.g., a wand, equipped with a relative motion sensor that outputs data indicative of a change in position of the wand. The system also has one or more light sources and a photodetector that detects their light and outputs data indicative of the detected light. The system uses one or more controllers to determine the absolute position of the wand based on the data output by the relative motion sensor and by the photodetector. The data enables determination of the absolute pose of the wand, which includes the absolute position of a reference point chosen on the wand and the absolute orientation of the wand. To properly express the absolute parameters of position and / or orientation of the wand a reference location is chosen with respect to which the calculations are performed. The system is coupled to a display that shows an image defined by a first and second orthogonal axes such as two axes belonging to world coordinates (Xo,Yo,Zo). The one or more controllers are configured to generate signals that are a function of the absolute position of the wand in or along a third axis for rendering the display. To simplify the mapping of a real three-dimensional environment in which the wand is operated to the cyberspace of the application that the system is running, the third axis is preferably the third Cartesian coordinate axis of world coordinates (Xo,Yo,Zo).
Owner:ELECTRONICS SCRIPTING PRODS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products