An illuminating device coupled with sensors or an image acquisition device and a logical controller allows illumination intensity and spectrum to be varied according to changing user needs. The system provides illumination to areas according to the principles of correct lighting practice for the optimal performance of visual tasks in the most efficient, cost effective manner. Aspects of the invention include: lighting fixtures which adapt to ambient lighting, movement, visual tasks being performed, and environmental and personal conditions affecting illumination requirements at any given instant. Lighting fixtures having spatial distribution of spectrum and intensity, providing both “background” room lighting, and “task” lighting.
A lighting device comprises, or consists essentially of, a housing, a solid state light emitter and conductive tracks. The conductive tracks are positioned on the housing and are coupleable with a power supply. The conductive tracks comprise a positive conductive track and a negative conductive track. Each of the solid state light emitters is in electrical contact with a positive conductive track and a negative conductive track. Another lighting device comprises a fixture and a solid state light emitter in which the fixture comprises conductive elements which are coupleable to at least one power supply and the solid statelight emitter is mounted on the fixture. There is also provided a lighting device which provides light of an intensity which is at least 50 percent of its initial intensity after 50,000 hours of illumination.
A light source apparatus which is improved in the efficiency of light emission thus to increase the operating life and the mechanical strength and a method of producing the same are provided. The light source apparatus 1 comprises a radiator plate 3 having thermally conductive properties, an insulating member 4 coupled to at least one side of the radiator plate 3 and having a through hole 6 provided in the side thereof facing the radiator plate 3, an LED chip 2 installed and thermally coupled to an exposed portion of the radiator plate 3 facing the through hole 6, an extension 4a inwardly projecting at the hole 6 from the radiator plate 3 end of the insulating member 4, a wiring pattern 8 provided on the insulating member 4 and electrically isolated by the insulating member 4 from the radiator plate 3, bonding wires 9 electrically connecting between portions of the wiring pattern 8 extended to the extension 4a and the electrodes of the LED chip 2, and a light-transmissive sealing material 10 filled in the through hole 6 for entirely encapsulating the LED chip 2 and the bonding wires 9.
A lighting assembly, comprising a light engine assembly and a room-side element. The room-side element is in contact with the light engine assembly. The light engine assembly comprises at least one trim element and a light engine. The trim element defines a trim element internal space. The light engine comprises at least one solid state light emitter, and is positioned within the trim element internal space. Also, a lighting assembly, comprising a light engine assembly and means for dissipating heat from the light engine assembly.
In embodiments of the present invention, a method and system is provided for designing improved intelligent, LED-based lighting systems. The LED based lighting systems may include fixtures with one or more of rotatable LED light bars, integrated sensors, onboard intelligence to receive signals from the LED light bars and control the LED light bars, and a mesh network connectivity to other fixtures.
A lighting device, comprising a housing and at least one mounting clip. The housing comprises an electrical connection region engageable in an electrical receptacle. The mounting clip is pivotable from a first position, where an end region of the mounting clip does not extend beyond a periphery of the housing, to a second position, where the end region extends beyond the housing periphery. Also, a lighting device, comprising a housing, a trim element and at least one mounting clip. The mounting clip is pivotable, such that if the mounting clip is in a second position and then the trim element is rotated, the mounting clip will pivot to a third position, where the mounting clip engages the housing such that the trim element is biased toward a ceiling or other structure in which the lighting device is mounted. Also, methods of installing housings and / or trim elements.
A high-intensity light source is formed by a micro array of a semiconductorlight source such as a LEDs, laser diodes, or VCSEL placed densely on a liquid or gas cooled thermally conductive substrate. The semiconductor devices are typically attached by a joining process to electrically conductive patterns on the substrate, and driven by a microprocessor controlled power supply. An optic element is placed over the micro array to achieve improved directionality, intensity, and / or spectral purity of the output beam. The light module may be used for such processes as, for example, fluorescence, inspection and measurement, photopolymerzation, ionization, sterilization, debris removal, and other photochemical processes.
A high intensitylight source employs a plurality of light emitting diodes associated with a unitary reflector subassembly. The reflector subassembly defines an array of frustoconical reflectors arranged in rows and columns with the adjacent reflectors of each row being connected by a diverging slot with reflective wall surfaces. The light emitting diodes are mounted on a printed circuit board which forms a component of heat sink subassembly.
A light emitting diode (LED) bulb includes a heat sink, a circuit layer having two opposite sides, multiple LEDs mounted on one side and an electrical insulating layer connected between the opposite side and the heat sink. Heat generated by the LEDs is conducted to the heat sink through the circuit layer and the electrical insulting layer and is dissipated quickly. Further, a fan can be mounted on the fins to dissipate heat from the heat sink more quickly. Therefore, the LED bulb has good heat dissipating efficiency.
A light-emitting diode (LED) includes a heat sink (10) having a cross section along an axial direction thereof being U-shaped. The heat sink includes a substrate (102) and a sidewall (11) extending from an outer periphery of the substrate. A circuit board (40) is received in the heat sink and arranged on the substrate. At least one LED (30) is arranged on and electrically connected to the circuit board and thermally connected with the substrate of the heat sink. A plurality of fins (100) extend outwardly from an outer surface (110) of the sidewall of the heat sink. Each fin has a plurality of branches (100a, 100b) being connected together at the outer surface of the sidewall and being spaced from each other at outer-peripheries thereof.
A lighting device comprises a heat sink, a housing mounted to and / or thermally coupled to the heat sink, a basket assembly attached to the housing, a solid state light emitter thermally coupled to the heat sink, and a baffle assembly attached to the housing. Also, a lighting device comprising a basket assembly and a baffle assembly. In some embodiments, the basket assembly comprises a first member defining a first opening, a second member, a space between the first and second members, and lenses in the opening and in the space. In some embodiments, the heat sink extends farther in a first direction in a first plane than a largest dimension of the housing in any plane which is parallel to the first plane. In some embodiments, at least one additional component (e.g., a power supply module or a junction box) is in contact with the heat sink element.