Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4705 results about "High flux" patented technology

Bendable high flux LED array

A bendable light emitting diode (LED) array in accordance with the present invention includes heat spreaders, dielectric material disposed above each heat spreader, and a bendable electrical interconnection layer disposed above these heat spreaders and electrically insulated from these heat spreaders by the dielectric material. At least one via passes through the dielectric material above each heat spreader, and at least one LED die is disposed above each via. The bendable electrical interconnection layer may be a lead frame comprising metal pathways that electrically interconnect some or all LED dice in series, in parallel, in anti-parallel, or in some combination of these configurations. Each via contains a thermally conductive material in thermal contact with the corresponding heat spreader below it and in thermal contact with the corresponding LED die above it. The LED dice may be thermally and electrically coupled to submounts disposed above corresponding heat spreaders in some embodiments.
Owner:EPISTAR CORP

Multiple component solid state white light

A white light emitting lamp is disclosed comprising a solid state ultra violet (UV) emitter that emits light in the UV wavelength spectrum. A conversion material is arranged to absorb at least some of the light emitting from the UV emitter and re-emit light at one or more different wavelengths of light. One or more complimentary solid state emitters are included that emit at different wavelengths of light than the UV emitter and the conversion material. The lamp emits a white light combination of light emitted from the complimentary emitters and from the conversion material, with the white light having high efficacy and good color rendering. Other embodiments of white light emitting lamp according to the present invention comprises a solid state laser instead of a UV emitter. A high flux white emitting lamp embodiment according to the invention comprises a large area light emitting diode (LED) that emits light at a first wavelength spectrum and includes a conversion material. A plurality of complimentary solid state emitters surround the large area LED, with each emitter emitting light in a spectrum different from the large area LED and conversion material such that the lamp emits a balanced white light. Scattering particles can be included in each of the embodiments to scatter the light from the emitters, conversion material and complimentary emitters to provide a more uniform emission.
Owner:CREELED INC

High flux led assembly

A high intensity light source employs a plurality of light emitting diodes associated with a unitary reflector subassembly. The reflector subassembly defines an array of frustoconical reflectors arranged in rows and columns with the adjacent reflectors of each row being connected by a diverging slot with reflective wall surfaces. The light emitting diodes are mounted on a printed circuit board which forms a component of heat sink subassembly.
Owner:WHELEN ENGINEERING COMPANY

Multiple component solid state white light

A white light emitting lamp is disclosed comprising a solid state ultra violet (UV) emitter that emits light in the UV wavelength spectrum. A conversion material is arranged to absorb at least some of the light emitting from the UV emitter and re-emit light at one or more different wavelengths of light. One or more complimentary solid state emitters are included that emit at different wavelengths of light than the UV emitter and the conversion material. The lamp emits a white light combination of light emitted from the complimentary emitters and from the conversion material, with the white light having high efficacy and good color rendering. Other embodiments of white light emitting lamp according to the present invention comprises a solid state laser instead of a UV emitter. A high flux white emitting lamp embodiment according to the invention comprises a large area light emitting diode (LED) that emits light at a first wavelength spectrum and includes a conversion material. A plurality of complimentary solid state emitters surround the large area LED, with each emitter emitting light in a spectrum different from the large area LED and conversion material such that the lamp emits a balanced white light. Scattering particles can be included in each of the embodiments to scatter the light from the emitters, conversion material and complimentary emitters to provide a more uniform emission.
Owner:CREELED INC

Preparation and characterization of formulations in a high throughput mode

The invention is an automated robotic system for the production and testing of formulations at a very high throughput. It is an integrated system of hardware and software capable of preparing and evaluating hundreds of emulsions per day. The system can formulate aqueous solutions (SL), oil in water emulsions (EW), suspo-emulsions (SE), micro capsule suspensions (CS), micro-emulsions (ME), and suspension concentrates (SC) at the 1 ml to 25 ml scale. The system can process emulsions rapidly in an automated way and enable very flexible formulation recipes to be introduced. The system allows chemists to generate experimental samples of varying recipe and method to be conducted in parallel with projected throughput of up to 1200 formulations processed and characterized per day. Materials and consumables can be distributed from storage storage systems to the work stations where dispensing of ingredients in various states can be performed, including solids, liquids, gels, pastes, suspensions and waxes. The emulsions formed can be characterized using methods including phase diagnosis, turbidity analysis, viscosity and particle sizing using automated test equipment. An integrated module can also perform Tank Mix Compatibility testing in high throughput mode. The modular system allows future processes and tests to be added, either to a station, or as a new station. The software capability includes tracking of processes from start to finish and the integration of analytical data with the as-designed and as-formulated experimental results.
Owner:SYNGENTA LTD

Methods and systems for making electrodes having at least one functional gradient therein and devices resulting therefrom

The invention disclosed herein provides for methods and apparatuses that yield electrodes having at least one functional gradient therein. In many embodiments, the electrodes comprise an electrode matrix having a plurality of layers, where at least two of the layers differs functionally, in composition, structure, or, organization. High-throughput electrode screening apparatuses are disclosed that include array formers and testers. Electrodes and battery cells arising from the methods and apparatuses disclosed herein are likewise disclosed. The methods, apparatuses, and resulting electrode and cell devices are, in some embodiments, ideally suited for use in lithium-ion batteries.
Owner:MOLECULAR NANOSYST

Nanosize electropositive fibrous adsorbent

Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m2 / g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector / concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.
Owner:ARGONIDE CORP

High throughput sem tool

A multi-beam scanning electron beam device (100) is described. The multi-bea scanning electron beam device having a column, includes a multi-beam emitter (110) for emitting a plurality of electron beams (12,13,14), at least one common electron beam optical element (130) having a common opening for at least two of the plurality of electron beams and being adapted for commonly influencing at least two of the plurality of electron beams, at least one individual electron beam optical element (140) for individually influencing the plurality of electron beams, a common objective lens assembly (150) for focusing the plurality of electrons beams having a common excitation for focusing at least two of the plurality of electron beams, and adapted for focusing the plurality of electron beams onto a specimen (20) for generation of a plurality of signal beams (121, 131,141), and a detection assembly (170) for individually detecting each signal beam on a corresponding detection element.
Owner:CARL ZEISS SMT GMBH +1

High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material

A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-containing vapor is disclosed. In one embodiment, the method comprises forming a precursor material comprising group IB and / or group IIIA particles of any shape. The method may include forming a precursor layer of the precursor material over a surface of a substrate. The method may further include heating the particle precursor material in a substantially oxygen-free chalcogen atmosphere to a processing temperature sufficient to react the particles and to release chalcogen from the chalcogenide particles, wherein the chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form a group IB-IIIA-chalcogenide film at a desired stoichiometric ratio. The chalcogen atmosphere may provide a partial pressure greater than or equal to the vapor pressure of liquid chalcogen in the precursor layer at the processing temperature.
Owner:AERIS CAPITAL SUSTAINABLE IP

Fiber optic apparatus and use thereof in combinatorial material science

InactiveUS6519032B1Facilitate the discovery of commercially important polymericEffectively and efficiently characterizingSequential/parallel process reactionsComponent separationFiberHigh-Throughput Screening Methods
Methods, systems and devices are described for rapid characterization and screening of liquid samples to determine properties (e.g., particle size, particle size distribution, molar mass and / or molar mass distribution) thereof with static light scattering and / or dynamic light scattering. The liquid samples can be solutions, emulsions, suspensions or dispersions. One method, includes providing a vessel containing a liquid sample having an exposed surface that defines a gas-liquid sample interface, and analyzing the sample by light scattering methods that include transmitting light through the gas-liquid sample interface into the sample, and detecting light scattered from the sample or from a component thereof. Additional methods are directed to characterizing a plurality of liquid samples or components thereof. The methods, systems, and devices have applications in high-throughput screening, and particularly, in combinatorial materials research and in industrial process control.
Owner:WYATT TECH

Detection of ion channel or receptor activity

The invention provides nanosensors and nanosensor components for the detection of ion channel activity, receptor activity, or protein protein interactions. Certain of the nanosensor components comprise a nanoparticle and recognition domain. Following contact with cells and, optionally, internalization of the nanosensor component by a cell, the recognition domain binds to a target domain, e.g., a heterologous target domain, of a polypeptide of interest such as an ion channel subunit, G protein coupled receptor (GPCR), or G protein subunit. Ion channel activity, GPCR activity, or altered protein interaction results in a detectable signal. The nanoparticles may be functionalized so that they respond to the presence of an ion by altering their proximity. Certain of the nanosensors utilize the phenomenon of plasmon resonance to produce a signal while others utilize magnetic properties, RET, and/or ion-sensitive moieties. Also provided are polypeptides, e.g., ion channel subunits, comprising a heterologous target domain, and cell lines that express the polypeptides. Further provided are a variety of methods for detecting ion channel activity, receptor activity, or protein interaction and for identifying compounds that modulate one or more of these. In certain embodiments the invention allows the user to detect the activity of specific ion channels even in the presence of other channels that permit passage of the same ion(s) or result in activation of the same downstream targets, thereby achieving improved specificity in high throughput screens while at the same time providing a high signal to noise ratio.
Owner:CHILDRENS MEDICAL CENT CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products