Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6481results about "Electric lighting sources" patented technology

Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses

Systems and apparatuses include devices, biosensors, environmental sensors, security related sensors, networked products, communications processors and components, alert and information components, processors, and software to support: 1) facilitating medication regimen and patient / user health administration, dosage control, tracking, compliance, information inquiry and presentation, reminder and notification; 2) providing monitoring, information, ordering, and intervention; 3) presenting the option of leveraging the preventative care, alert and notification components with other components to facilitate user or occupant well being, along with living, work area and dwelling environmental or security safety; and 4) enhancing the dwelling, living or work area with products that may be networked to support the widespread acceptance of these systems and apparatuses. The systems include a) processing, centralizing and communicating device commands and / or programs, e.g. a multifunctional device controller; b) device administration; c) patient / user information; d) dwelling environmental safety; e) security breach information; f) centralized and remote apparatus and system activations through primary component or at least one backup.

Home automation system and method

A home automation system and method for automatic control of controlled devices throughout a home. A unique architecture of occupancy sensors includes entry/exit sensors for detecting movement through doorways that separate rooms in the home, room motion sensors for detecting room occupancy, spot sensors to detect occupancy of specific locations within the rooms, and house status sensors to detect the status of certain parameters of the home. A central controller communicates with the sensors and controlled objects over a communications network, where the sensors and controlled objects can be added to the system in a ‘plug and play’ manner. The central controller controls the controlled objects in response to the entry/exit sensors, room motion sensors, spot sensors and the house status sensors. This control is accomplished by assigning each room to one of a plurality of room occupancy states, and to one of a plurality of room modes for creating desired room atmospheres using the controlled objects, which both dictate how the controlled objects are controlled by the central controller. The room modes travel from room to room as the occupant moves throughout the home, and multiple occupants can be using different room modes as they move about the home. The controlled objects also have controlled object states, which are used by the central controller to control the controlled objects.

Multiple component solid state white light

A white light emitting lamp is disclosed comprising a solid state ultra violet (UV) emitter that emits light in the UV wavelength spectrum. A conversion material is arranged to absorb at least some of the light emitting from the UV emitter and re-emit light at one or more different wavelengths of light. One or more complimentary solid state emitters are included that emit at different wavelengths of light than the UV emitter and the conversion material. The lamp emits a white light combination of light emitted from the complimentary emitters and from the conversion material, with the white light having high efficacy and good color rendering. Other embodiments of white light emitting lamp according to the present invention comprises a solid state laser instead of a UV emitter. A high flux white emitting lamp embodiment according to the invention comprises a large area light emitting diode (LED) that emits light at a first wavelength spectrum and includes a conversion material. A plurality of complimentary solid state emitters surround the large area LED, with each emitter emitting light in a spectrum different from the large area LED and conversion material such that the lamp emits a balanced white light. Scattering particles can be included in each of the embodiments to scatter the light from the emitters, conversion material and complimentary emitters to provide a more uniform emission.

Closed-loop, daylight-sensing, automatic window-covering system insensitive to radiant spectrum produced by gaseous-discharge lamps

A system for automatic regulation of daylight admitted by a window in the presence of artificial illumination produced by a high-efficiency (e.g., fluorescent-type) electric lamp. A preferred embodiment, adaptive window covering system 10, consists of an illuminance sensor 11, a conventional control apparatus 12, and a conventional shading means 13. System 10 is used in conjunction with a conventional, high-efficiency, electric lamp 14 and a conventional window 18, in a room 19. Sensor 11 produces a signal dependent on power contained in a portion of the daylight spectrum, but substantially insensitive to power contained in the spectrum of artificial illumination produced by lamp 14. In a preferred embodiment, sensor 11 includes a silicon photodiode and optical low-pass filter to provide a spectral response which extends from approximately 800 to 1200 nanometers, which falls outside the spectrum produced by typical fluorescent lamps (e.g, 300 to 750 nanometers). Sensor 11 is oriented to sample the ambient illumination in room 19, which includes both daylight and artificial components. Control apparatus 12 produces an actuating signal dependent on the output of sensor 11. Shading means 13 varies the amount of daylight admitted by window 18 as a function of the actuating signal produced by control apparatus 12. Thus, system 10 varies the amount of daylight admitted by window 18 as a function of the power contained in a portion of the daylight spectrum, but independent of the power contained in the spectrum produced by lamp 14.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products