Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

8614 results about "Power control" patented technology

Power control, broadly speaking, is the intelligent selection of transmitter power output in a communication system to achieve good performance within the system. The notion of "good performance" can depend on context and may include optimizing metrics such as link data rate, network capacity, outage probability, geographic coverage and range, and life of the network and network devices. Power control algorithms are used in many contexts, including cellular networks, sensor networks, wireless LANs, and DSL modems.

Distributed power system using direct current power sources

A distributed power system including multiple (DC) batteries each DC battery with positive and negative poles. Multiple power converters are coupled respectively to the DC batteries. Each power converter includes a first terminal, a second terminal, a third terminal and a fourth terminal. The first terminal is adapted for coupling to the positive pole. The second terminal is adapted for coupling to the negative pole. The power converter includes: (i) a control loop adapted for setting the voltage between or current through the first and second terminals, and (ii) a power conversion portion adapted to selectively either: convert power from said first and second terminals to said third and fourth terminals to discharge the battery connected thereto, or to convert power from the third and fourth terminals to the first and second terminals to charge the battery connected thereto. Each of the power converters is adapted for serial connection to at least one other power converter by connecting respectively the third and fourth terminals, thereby forming a serial string. A power controller is adapted for coupling to the serial string. The power controller includes a control part adapted to maintain current through or voltage across the serial string at a predetermined value.

Power controls with photosensor for tube mounted LEDs with ballast

A power saving device for a light emitting diode (LED) lamp mounted to an existing fixture for a fluorescent lamp having a ballast assembly and LEDs positioned within a tube and electrical power delivered from the ballast assembly to the LEDs. The LED lamp includes means for controlling the delivery of the electrical power from the ballast assembly to the LEDs wherein the use of electrical power can be reduced or eliminated automatically during periods of non-use. Such means for controlling include means for detecting the level of daylight in the illumination area of said least one LED in particular a light level photosensor and means for transmitting to the means for controlling a control signal relating to the detected level of daylight from the photosensor. The photosensor can be used in operative association with an on-off switch in power connection to the LEDs, or with a computer or logic gate array in operative association with a dimmer that controls the power to the LEDs. An occupancy sensor that detects motion or a person in the illumination area of the LEDs can be optionally used in association with the photosensor and the computer and dimmer. Two or more such LED lamps with one or more computers or logic gate arrays can be in network communication with the photosensors and the occupancy sensors to control the power to the LEDs.

Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation

A WCDMA system includes a Base Station (BS) or forward transmitter and a pilot channel that transmits control signals between a Mobile Station (MS) and BS to reconfigure their transmitter/receiver according to the prediction of the channel power and channel power probability density function separated into three distinct equal probable regions. Data signals are encoded using a one-half Viterbi encoder and interleaved. The interleaved data bits are modulated using Quadrature Phase Shift Keying (QPSK) modulation. The QPSK data is multiplexed with the pilot channel and spread by an appropriate code in an OFDM transmitter modified by a long code. Output of the transmitter may be provided to two diverse antennas for reliable communications to the receiver. Data may be received at two diverse antennas. The outputs are provided to match filters coupled to a coherent rake receiver and a channel prediction system. The future attenuation of the channel coefficients and power are determined by the prediction system for several milliseconds. The power levels of each finger in the Rake receiver can be predicted and the strongest ones used in determining the optimum transmitter power or rate control for operating the system transmitters and receivers based on computing a long range power prediction of each finger of a rake receiver.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products