Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1737 results about "Cellular network" patented technology

A cellular network or mobile network is a communication network where the last link is wireless. The network is distributed over land areas called "cells", each served by at least one fixed-location transceiver, but more normally, three cell sites or base transceiver stations. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighbouring cells, to avoid interference and provide guaranteed service quality within each cell.

System and method for optimizing network capacity in a cellular wireless network

A system and method is disclosed for increasing the efficiency of a cellular communication network, reduce ongoing operating costs and increase revenue. According to one aspect, a method is disclosed for increasing the efficiency of a cellular communication network whereby network capacity in the radio access network (RAN) and baseband processing for wireless connections are dynamically adjusted to automatically provision sufficient bandwidth and baseband processing capacity in response to changes in the network. The method is further extended by implementing policy management which allows wireless carriers to develop and implement network based policies to automatically increase or decrease the amount of processing resources and network bandwidth required from any cell site, hub or mobile switching office. According to another aspect, network efficiency is enhanced by utilizing a novel cellular network infrastructure. RF signals from cell site antennas of various technology types are demodulated, digital bit information is extracted from the RF signals, processed, and groomed into Gigabit Ethernet/Resilient Packet Ring (GigE/RPR) or Ethernet over copper traffic flows using specific Quality of Service (QoS) priorities. The GigE/RPR traffic flows are routed to hub sites or mobile switching offices, at which point the packetized information is extracted and converted to RF signals that are equivalent to the signals that were received at the antenna. The RF signals are sent over coaxial cable to a network hub including a pool of Base Transceiver Stations (BTSs) (or Node Bs). The hub is coupled to one or more mobile switching offices via a second fiber optic ring.

Method for optimizing the random access procedures in the cdma cellular networks

The disclosed invention is referred to a method for optimising the random access procedures in third generation CDMA cellular telephony systems. The particular embodiment of the example concerns a TD-SCDMA-TDD synchronous realization. The disclosed procedure includes a preliminary part charged to the network (BSSC, MSC) only for establishing the following associations between the configuration parameters of the involved physical channels: one signature burst (SYNC1) is associated to one forward access channel (P-FACH) only, in order to avoid any, ambiguity in the mobile stations about where to look for the expected acknowledgement from the network; one random access common channel (P-RACH) is associated to one forward access channel (P-FACH) only, in order to reduce collision on the latter (P-RACH); one access grant channel (P/S-CCPCH, AGCH) only is associated to one random access common channel (P-RACH), in order to avoid any ambiguity in the mobile stations about where to look for the expected answer from the network with the indication of the dedicated service channels (DPCH); and each complete associative link binding the involved physical channels is included in the system information and broadcasted into the serving cell to be read by the mobile stations (MS, UE) when entering an actual part of the procedure charged to exchange protocol messages with the network (BSSC, MSC) through said associative links that being signalling at once to the mobile stations the route towards the services offered by the network, simplifying the access procedure consequently. Suitable groupings among: Downlink pilot sequences, Uplink pilot sequences, scrambling codes, basic midambles, are carried out in a cell-discriminating way and broadcasted into the cell to simplify the serving cell selection procedure (<cross-reference target="DRAWINGS">FIG. 1</cross-reference>).

Time division multiple access downlink personal communications system voice and data debit billing method

A method and apparatus for full-duplex data communication in or for a wireless communications network, such as a cellular network, PCS network, or mobile satellite network, where a remote feature access control operation utilizes a switch to reserve and route selected voice channels or traffic channels in response to the remote feature access control operation. The method comprising the steps of: configuring a mobile switching center (MSC) to route the selected voice channels to a multi-port protocol converter (MPPC) for transmitting a selected data message on the selected voice channel. Transmitting the selected data message via the multi-port protocol converter on the selected voice channel via a data messaging channel during the remote feature access control operation. Then the selected data message is received at a communicator, which is communicatively linked to a reverse voice and/or digital traffic channel of the wireless network, thereby providing for both forward and reverse messaging on the wireless communications network. An apparatus is disclosed for data communication in or for a wireless communications network for transmitting and receiving both forward and reverse voice, traffic, and control channel messages utilizing the disclosed methodology.

Method and apparatus for remotely monitoring a site

The present invention is directed to providing systems and methods for remotely monitoring sites to provide real time information which can readily permit false alarms to be distinguished, and which can identify and track the precise location of an alarm. In exemplary embodiments, monitoring capabilities such as intrusion/fire detection and tracking capabilities, can be implemented through the use of multistate indicators in a novel interface which permits information to be transmitted using standard network protocols from a remote site to a monitoring station in real-time over preexisting communication networks, such as the Internet. A wireless network can also be established using browser encapsulated communication programs (for example, active X control, Java applets, and so forth) to transmit data packets which comply with any standard wireless local area network protocol. Communications can thereby be established between a web server embedded in a centrally located host monitoring station and a separate security panel deployed in each of the buildings to be remotely monitored. In exemplary embodiments, communications can be handed off from the centrally located host monitoring station to a mobile monitoring station (for example, to a laptop computer in a responding vehicle, such as a police or fire vehicle). The handoff can be such that direct communications are established between a security panel site being monitored and the laptop, or over, for example, a cellular network or indirect communications can be established via the host monitoring station.

Access system for a cellular network

The present invention relates to a method and system for providing access to a cellular network (8), wherein a terminal device (1) is connected to an access device (2) according to access specifications of a broadband access network (12) which is not specifically designed to be used as a part of cellular network (8). The terminal device (1) indicates to the access device (2) that it wishes to be connected to the cellular network (8), and a session or call and a radio bearer is setup between the terminal device (1) and the cellular network (8). To achieve this, a service node (5) provided in the cellular network (8) requests a suitable access bearer from the access network (12) and the access device (2) sets up a corresponding access channel towards the terminal device (1). The terminal device (1) then associates the access channel to the correct radio bearer by using a corresponding identification. Thereby, service functions of the cellular network, e.g. UMTS services, can be distributed via any access network and existing broadband or high-speed access networks can be implemented in new cellular network structures. A huge capacity enhancement can thus be offered to the network operators of the cellular network without any standardization effort or license fee and at very small investment and maintenance costs.

Wireless telecommunications system and method of operation providing users' carrier selection in overlapping hetergenous networks

An improved wireless telecommunication system enables a user to obtain communication services in overlapping wireless heterogeneous or homogeneous cellular networks at the most economical cost and bandwidth. A plurality of overlapping cellular networks includes a common command channel, a Central Selection Agency (CSA), a home location register, a visitor location register, and a user device positional location mechanism. In one embodiment the user device is equipped with a Global Positioning System (GPS) to determine its location. In placing a call, the user device broadcasts its ID, location and connection capability requirements on the common command channel. When a base station for the command channel bears the request, the CSA and the home location register for the user are informed. The CSA capability/requirements determine which network and base station selections are potential carriers for the call. Based on user preferences established by a profile stored in an accessible database, the CSA assigns a network and base station to handle the connection. The user device is informed and tunes to the appropriate network and protocols. For incoming calls, the calling party checks the home location register to determine the last known location. The user device is informed that a called is waiting. The user device selects the network and base station to receive the call in a fashion similar to that of placing the call. A call may be transferred from one network to a different network, the networks using different protocol. The user device may be programmed to change networks at random times to provide enhanced security for a call.

Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks

Methods and apparatuses for synchronizing basestations in a cellular network. One exemplary method performs time synchronization between at least two basestations, a first basestation and a second basestation, of a cellular communication system. In this exemplary method, a first time-of-day and a first geographical location of a first mobile cellular receiver station (MS) are determined from a first satellite positioning system (SPS) receiver which is co-located with the first MS, and the first time-of-day and first location are transmitted by the first MS to a first basestation which determines a time-of-day of the first basestation from the first time-of-day and first location and from a known location of the first basestation. Also in this exemplary method, a second time-of-day and a second geographical location of a second MS are determined from a second SPS receiver which is co-located with the second MS, and the second time-of-day and the second location are transmitted to a second basestation which determines a time-of-day of the second basestation from the second time-of-day and the second location and a known location of the second basestation. Other methods and apparatuses are also described for synchronizing basestations in a cellular network.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products