Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

14110results about "Wireless network protocols" patented technology

Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (QOS) communications, unified messaging, and video conferencing via the internet

InactiveUS6763226B1High quality voice and data communicationMinimal costCordless telephonesInterconnection arrangementsQuality of serviceMass storage
World-Wide-Walkie-Talkie, a high speed multifunction interstellar wireless computer / instant messenger communicator, Personal Digital Assistant (PDA), coupled with a resilient, robust, VoIP data network and internet server method, deploying multiple wireless networks and protocols such as Voice Over IP, GPRS, WAP, Bluetooth, PCS, I-Mode, comprising a high speed Intel Pentium 4 Mobile(TM) or compatible Processor, to formulate a internet gateway system (99) and network bridge (150) for establishing instant low cost, real time global communications to the Public Switched Telephone Network via the internet (54). A PUSH-TO-TALK-WORLDWIDE button (21) instantly initiates global bisynchronous communications, or videoconferencing sessions. Fax, VideoMail, and unified messaging services are immediately available. GPS and mass memory provides global navigational tracking and data storage. Internet users, telephones, and cellular / satellite phone users can intercommunicate with the invention via VoIP / IM services. The invention provides uniformed global wireless communications, eliminates traditional long distance costs, and operates anywhere on earth.
Owner:COMP SCI CENT

Integrating public and private network resources for optimized broadband wireless access and method

A system and method are disclosed for providing ubiquitous public network access to wireless, mobile terminals using private networks having private network access points and connections with the public network. The wireless, mobile terminals are permitted to use wireless, radio frequency communication devices comprising private network access points. A network access server (NAS) is associated with each wireless, radio frequency communication device and provides an interface between the wireless, mobile terminals and the private network. The NAS controls registration of wireless, mobile terminals as subscribers, and provides public network access to the mobile terminals through the private network's access point and public network connection. The NAS also restricts access by the mobile terminals to the private network, meters network useage by the mobile terminals, and controls use of bandwidth by the mobile terminals. The NAS also interfaces with integration operator distributed services over the public network. The integration operator services include databases and servers for storing and providing subscriber and network provider information for subscriber registration, network access and useage control, and accounting purposes. The NAS may be provided as a standalone element embodied in a computer, or may be integrated with the wireless radio frequency device and/or a network adaptor device for the private network.
Owner:NTT DOCOMO DCMR COMM LAB USA

Nomadic translator or router

A nomadic router or translator enables a laptop computer or other portable terminal which is configured to be connected to a home network to be connected to any location on the internet or other digital data communication system. The router automatically and transparently re-configures the terminal to its new location and processes outgoing and incoming data. The router includes a processor which appears as the home network to the terminal, and appears as the terminal to the communication system. The terminal has a permanent address, the router has a router or translator address, and the terminal transmits outgoing data to the system including the permanent address as a source address. The processor translates the outgoing data by replacing the permanent address with the router address as the source address. The terminal receives incoming data from the system including the router address as a destination address, and the processor translates the incoming data by replacing the router address with the permanent address as the destination address. Alternatively, the terminal can be directly connected to a point on a local network, and the router connected to another point on the network. The router can be employed to implement numerous applications including nomadic e-mail, network file synchronizer, database synchronizer, instant network, nomadic internet and trade show router and can also be utilized as a fixed nomadic router.
Owner:NOMADIX INC

Spatial multiplexing in a cellular network

The present invention provides methods and apparatus for implementing spatial multiplexing in conjunction with the one or more multiple access protocols during the broadcast of information in a wireless network. A wireless cellular network for transmitting subscriber datastream(s) to corresponding ones among a plurality of subscriber units located within the cellular network is disclosed. The wireless cellular network includes base stations and a logic. The base stations each include spatially separate transmitters for transmitting, in response to control signals, selected substreams of each subscriber datastream on an assigned channel of a multiple access protocol. The logic communicates with each of the base stations. The logic assigns an available channel on which to transmit each subscriber datastream. The logic routes at least a substream of each datastream to at least a selected one of the base stations. The logic also generates control signals to configure the at least a selected one of the base stations to transmit the selected substreams to a corresponding one among the plurality of subscriber units on the assigned channel. A subscriber unit for use in a cellular system is also disclosed. The subscriber unit includes: spatially separate receivers, a spatial processor, and a combiner. The spatially separate receivers receive the assigned channel composite signals resulting from the spatially separate transmission of the subscriber downlink datastream(s). The spatial processor is configurable in response to a control signal transmitted by the base station to separate the composite signals into estimated substreams based on information obtained during the transmission of known data patterns from at least one of the base stations. The spatial processor signals the base stations when a change of a spatial transmission configuration is required. The combiner combines the estimated substreams into a corresponding subscriber datastream.
Owner:INTEL CORP

Automatic building of neighbor lists in mobile system

In a radio access network (24) a femto radio base station (28f) comprises a resident receiver (54) which acquires system information broadcast in a radio access network (24). At least part of the system information is used for building, at the femto radio base station (28f), a neighbor data structure (59) comprising information for neighboring cells. The neighbor data structure (59) is then used for building a neighbor list. The neighbor list is subsequently transmitted from the femto radio base station (28f) to a user equipment unit (30) served by the femto radio base station (28f). In some example embodiments and modes, the femto radio base station (28f) reports the neighbor data structure to a network node (26, 100) other than the femto radio base station. The other node (26, 100) uses the neighbor data structure for building the neighbor list at the other node. In some example embodiments and modes, acquisition of the system information comprises scanning a surrounding macro coverage area of the femto radio base station for obtaining cell identity information for detected cells. In other example embodiments and modes, the acquisition of the system information can additionally comprise camping on a macro cell and using/consulting at least one system information block in the camped-on macro cell is consulted/used for obtaining information about at least one neighboring cell.
Owner:TELEFON AB LM ERICSSON (PUBL)

Internet-based consumer service brand marketing communication system which enables service-providers, retailers, and their respective agents and consumers to carry out service-related functions along the demand side of the retail chain in an integrated manner

An Internet-based consumer service marketing, merchandising and education / information system which enables service-providers, retailers and their respective agents, and consumers to carry out service-related functions along the demand side of the retail chain. A central USN / SM / SN / URL RDBMS stores a central database of USN / SM / SN / URL links, wherein the USN represents a Universal Service Number assigned to a particular service offered by a service-provider, the SM represents a Service Mark used in connection with the particular service, the SD is representative of one or more Universal Resource Locators pointing to information resources on the WWW relating to the particular service. A first subsystem enables a service-provider's marketing, brand and / or service managers to create and manage a local database of USN / SM / SN / URL links related to the consumer services of the service-provider being offered for sale in both physical and / or electronic marketplaces, and periodically transport the local database of USN / SM / SN / URL links to the central USN / SM / SN URL RDBMS by electronic data transport techniques. The local database of USN / SM / SN / URL links is managed with a local USN / SM / SN / URL RDBMS, and selected by the service-provider's marketing, brand and / or service managers so as to create a desired brand image for each consumer service of the service-provider. A second subsystem enables consumers to access one or more USN / SM / SN / URL links in the central USN / SM / SN / URL RDBMS, to request and obtain information about a service-provider's consumer service so as to make informed / educated purchases along the demand side of the retail chain. A third subsystem enables service-providers and their advertising and marketing agents to access one or more USN / SM / SN / URL links in the central USN / SM / SN / URL RDBMS, to display consumer service advertisements to consumers, at or near the point of purchase or sale within both physical and / or electronic retail shopping environments so as to project the desired brand image to consumers. A fourth subsystem enables retailers and their marketing and promotional agents to access one or more USN / SM / SN / URL links in the central USN / SM / SN / URL RDBMS, to promote consumer services to consumers, at or near the point of purchase or sale within both physical and / or electronic retail shopping environments so as to promote the sale of such services.
Owner:PERKOWSKI THOMAS J

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol/internet protocol (TCP/IP). The packet-centric protocol can be a user datagram protocol/internet protocol (UDP/IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access/time division duplex (TDMA/TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method.
The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Efficient Handover of Media Communications in Heterogeneous IP Networks using LAN Profiles and Network Handover Rules

Methods and systems are provided for efficient handover of a media session between heterogeneous IP networks. A mobile device with Internet access can operate a software program to communicate with a corresponding node. The corresponding node may access the Internet through either a NAT router or a firewall. The mobile device establishes a media session with a corresponding node via the transmission of a first media stream and receipt of a second media stream, and a media control channel can optionally be implemented. The mobile device can acquire Internet access through a second IP address, and packets routed between the second IP address and the Internet may traverse a NAT router. The mobile device can evaluate the type of NAT at the second IP address from a stored LAN profile. A software routine can determine that handover of the media session from the first IP address to the second IP address is preferred. A software routine can determine efficient handover procedures according to Network handover rules. The mobile device may begin transmitting a third media stream to the corresponding node and the corresponding node can transmit a fourth media stream to the second IP address. A media control channel is optionally supported.
Owner:GOOGLE LLC

Dynamic allocation of wireless mobile nodes over an internet protocol (IP) network

A method is described of automatically locating and connecting a mobile wireless communications device to a packet-switched network such as the Internet. An Internet Protocol (IP) packet from a terminal on the network, destined for receipt by the mobile device, is received at a home agent acting as a gateway or router linking the packet switched network to a second network, such as LAN, coupled to a wireless communications network. The home agent transmits an access-request message to an authentication server. The access-request message includes a destination IP address associated with the mobile device found in the IP packet. The authentication server responsively issues an access-accept message to the home agent if the mobile device is authorized to receive the IP packet. The access-accept message comprises (a) information uniquely identifying said device, such as the IMSI/ESN number for the device, and (b) information identifying a network to use to locate said device. The home agent issues a message containing the information uniquely identifying the device to a mobile node location server. The mobile node location server maintains a table mapping IP addresses for a plurality of mobile communication devices to information uniquely identifying the devices. In the event that the mobile node location server does not find an IP address for the device in the table, the device is paged via the wireless communications network. In response to the page, the mobile device dials into the wireless communications network and second network and initiates a connection to the packet switched network whereby the IP packet is transmitted to the device.
Owner:UTSTARCOM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products