Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

170 results about "Partial system" patented technology

Automatic building of neighbor lists in mobile system

In a radio access network (24) a femto radio base station (28f) comprises a resident receiver (54) which acquires system information broadcast in a radio access network (24). At least part of the system information is used for building, at the femto radio base station (28f), a neighbor data structure (59) comprising information for neighboring cells. The neighbor data structure (59) is then used for building a neighbor list. The neighbor list is subsequently transmitted from the femto radio base station (28f) to a user equipment unit (30) served by the femto radio base station (28f). In some example embodiments and modes, the femto radio base station (28f) reports the neighbor data structure to a network node (26, 100) other than the femto radio base station. The other node (26, 100) uses the neighbor data structure for building the neighbor list at the other node. In some example embodiments and modes, acquisition of the system information comprises scanning a surrounding macro coverage area of the femto radio base station for obtaining cell identity information for detected cells. In other example embodiments and modes, the acquisition of the system information can additionally comprise camping on a macro cell and using/consulting at least one system information block in the camped-on macro cell is consulted/used for obtaining information about at least one neighboring cell.
Owner:TELEFON AB LM ERICSSON (PUBL)

Preferred roaming list and system select feature

The System Select feature provides user selectable modes of operation in a mobile communication station, which allow certain fall-back options when a preferred system may not be available, but still steers the bulk of the system selection operations to preferred systems. In a first user selected mode, the mobile station scans for a broadcast system identifier or "SID" that matches an identifier of a preferred system stored in memory of the station. The second mode allows the user at least one option, which involves selection of a less than preferred system, but with this mode, the mobile station will still make a first attempt to register with a system having a SID matching one stored in memory of the station. A preferred implementation offers the user four system selection options. Options based on stored identifiers include an option to select only the home system, and an option to select from a preferred roaming list (PRL) if the home system is unavailable. In the other two options, if the scanning operations for the home system and systems on the PRL are ineffective, one option involves scanning a band corresponding to that used by the home system. In contrast, the other option involves scanning a band other than that used by the home system. The System Select programming, however, limits the operation in the last optional setting, for example to a set time period or until completion of one call. The preferred embodiment facilitates a substantially one-rate service, where the service provider charges the one rate for all calls through the home system, all systems on the PRL list and any system found during a scan of the home-system band.
Owner:BELL ATLANTIC MOBILE SYST

Autonomous navigation method of AUV (Autonomous Underwater Vehicle) based on Unscented FastSLAM (Simultaneous Localization and Mapping) algorithm

The invention discloses an autonomous navigation method of an AUV (Autonomous Underwater Vehicle) based on a FastSLAM (Simultaneous Localization and Mapping) algorithm. The autonomous navigation method comprises the steps that 1) the AUV acquires initial pose and position information through the GPS and a navigation sensor on the water surface; 2) predicting the pose and position and an environmental road sign of the AUV by adopting unscented particle filtering according to latest control variables inputted into the AUV and observation variables of the sensor; 3) generating a proposal distribution function for parameter adaptive adjustment by adopting fading adaptive unscented particle filtering, and sampling in the proposal distribution function; 4) associating the latest observation environment information according to each particle, and updating estimation for each characteristic by adopting unscented Kalman filtering; 5) performing resampling on a particle set by adopting an adaptive partial system resampling method; and 6) performing AUV positioning and map building. The autonomous navigation method can improve the particle sampling efficiency of the Unscented FastSLAM algorithm and reduce the degradation degree of the particles through improving the proposal distribution function and the resampling process of the Unscented FastSLAM algorithm, thereby enabling the consistency of AUV pose and position estimation and the accuracy of autonomous navigation to be greatly improved.
Owner:JIANGSU UNIV OF SCI & TECH

Electric Vehicle Refueling System

An enclosed two-part computer controlled cyclical and sequential through-flow conveying, usage and metering System (200) is disclosed, for use in the electric vehicle motive power provision industries, for said two-part enclosed System to sequentially convey small-volume rechargeable Cell-Modules by sequential conveyor-means in a metered through-flow sequential conveying manner within said two-part System wherein the first part is a Stationary Part that includes a specially manufactured Cell-Module dispensing Bowser and a specially manufactured Cell-Module Charging-Bay and wherein the second part is a Movable Part that includes a specially manufactured or specially adapted Cell-Module powered electric Vehicle having a specially manufactured Cell-Module Chamber installed within.A Nozzle (3) and a Portal (4) respectively provide means for the Stationary Part and the Movable Part to exchange a choosable plurality of small-volume rechargeable Cell-Modules (100) and (500).A System (200) provides a succinct fully enclosed matingly-co-operative interconnection means for the System (200) to sequentially dispense Charged Cell-Modules and remove depleted Cell-Modules. The System also removes faulty Cell-Modules and if necessary extinguishes, and isolates for fire safety purposes, over-heating, deformed, or ignited Cell-Modules.The invention provides means that parallel, mimic or improve upon the metered bowser dispensing manner by which a choosable sequential plurality of small volumes of fossil fuel are sequentially delivered to a conventional fossil fuel vehicle by a dispensing bowser at a conventional fuel Service Station facility. The invention also provides optional means for Cell-Modules to be recharged in situ by use of a specially manufactured charger.
Owner:BATTERY FUELING

System and method for dynamic distributed data processing utilizing hub and spoke architecture

The inventive system provides a distributed data processing system for performing data-related task implemented with a scalable hub and spoke architecture. The advantageous hub-and-spoke architecture comprises a central “hub” system site connected, through one or more high speed communication links, to one or more spoke systems, each of which may be located at a remote spoke system (which may be geographically dispersed from one another). While some information technology infrastructure is necessary for both the hub and the spoke systems, the expensive data processing and control systems, for implementing the majority of the system architecture, and where the majority of automated processing occurs, are concentrated at the hub location. Thus, most of the critical data processing activities are centralized at the hub system, while other activities that either must be performed, or are advantageous to be performed at a particular remote location, are executed by one or more spoke systems. Information generated from localized spoke system operations is transmitted to the hub system through communication links and other types of data or requested work can likewise be readily transmitted from the hub system to one or more spoke systems in real time.
Owner:J & B SOFTWARE

Distributed operator cooling system

A distributed operator cooling system is provided for a work vehicle. The system includes a primary circuit and a secondary loop. The primary circuit is a conventional A/C circuit having a compressor, a condenser, a receiver/dryer and an expansion valve. The secondary loop includes a coolant pump and a plurality of coolant-air heat exchangers each having a blower fan associated therewith. The secondary loop is coupled to the primary circuit by way of a coolant-refrigerant heat exchanger wherein the coolant of the secondary loop is chilled. Chilled coolant is circulated to the coolant-air heat exchangers by coolant lines and back to the pump and coolant-refrigerant heat exchanger by return lines. The coolant lines are routed through the wall of an operator's enclosure. At least one of the coolant-air heat exchangers is located in the forward area of the operator's enclosure in a front console of the vehicle substantially in front of the operator. A pair of coolant-air heat exchangers are located above and on either side, forward or aft of the operator's head. Additional heat exchangers can be provided at additional locations within the confines of the operator's enclosure for further distributed cooling and/or to compensate for potential hot spots within the cab. The blower fans associated with each coolant-air heat exchanger can be individually controlled to optimize the flow of air through the exchanger according to the needs of the operator. The use of multiple compact coolant-air heat exchangers positioned at multiple locations within the operator's enclosure allows for more efficient cooling than possible with a single large heat exchanger. The use of a secondary loop system allows for locating most of the system components remotely from the operators enclosure thereby reducing the risk of refrigerant contact with the operator and allows refrigerant lines to be shortened so as to improve the efficiency of the refrigerant cycle.
Owner:DEERE & CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products