Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

41514 results about "Impeller" patented technology

An impeller (also written as impellor or impellar) is a rotor used to increase (or decrease in case of turbines) the pressure and flow of a fluid.

Intravascular system for occluded blood vessels and guidewire for use therein

A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter. The guide catheter includes a wear resistant coating and is constructed so that its distal end includes plural sections of different outside diameters, with the distal most section being of the smallest outside diameter. A control console is provided to establish various modes of operation of the system based on manual inputs via switches or voice commands via voice recognition circuitry. A video panel displays the various modes of operation and instructions to the operator.
Owner:KENSEY NASH CORP

System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels

InactiveUS6843797B2Effectively revascularizingSafely revascularizingBalloon catheterCannulasAtherectomyThree vessels
A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter.
Owner:KENSEY NASH CORP

System and method of use for agent delivery and revascularizing of grafts and vessels

InactiveUS6905505B2Effectively revascularizingAvoid flowBalloon catheterCannulasImpellerBiological body
A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter.
Owner:KENSEY NASH CORP

Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors

A hover aircraft employs an air impeller engine having an air channel duct and a rotor with outer ends of its blades fixed to an annular impeller disk that is driven by magnetic induction elements arrayed in the air channel duct. The air-impeller engine is arranged vertically in the aircraft frame to provide vertical thrust for vertical takeoff and landing. Preferably, the air-impeller engine employs dual, coaxial, contra-rotating rotors for increased thrust and gyroscopic stability. An air vane assembly directs a portion of the air thrust output at a desired angle to provide a horizontal thrust component for flight maneuvering or translation movement. The aircraft can employ a single engine in an annular fuselage, two engines on a longitudinal fuselage chassis, three engines in a triangular arrangement for forward flight stability, or other multiple engine arrangements in a symmetric, balanced configuration. Other flight control mechanisms may be employed, including side winglets, an overhead wing, and / or air rudders or flaps. An integrated flight control system can be used to operate the various flight control mechanisms. Electric power is supplied to the magnetic induction drives by high-capacity lightweight batteries or fuel cells. The hover aircraft is especially well suited for applications requiring VTOL deployment, hover operation for quiet surveillance, maneuvering in close air spaces, and long duration flights for continuous surveillance of ground targets and important facilities requiring constant monitoring.
Owner:SANDERS JR JOHN K +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products