Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

552 results about "Radial compression" patented technology

Multi-section filamentary endoluminal stent

A multi-section filamentary stent comprises a braided section, which is a cylindrical mesh of a first set of filaments, connected to at least one wound section comprising a second set of one or more filaments having a repeating configuration with a bent portion. The two sections are preferably connected by at least one continuous filament extending into both sections. The two sections may be connected by a weld, a suture, a common graft, an overlapping portion of the two sections, or one or more filaments of one section looping through portions of the other section. The stent may comprise a first section, having a braided first stent architecture with a first flexibility and a first radial force, and a second section, having a non-braided second stent architecture with a second flexibility less than the first flexibility and a second radial force greater than the first radial force, in which at least one continuous filament is integral to both the first and second sections. The stent may have a radially compressed configuration and a radially expanded configuration, in which the first section has a first shortening ratio, and the second section has a second shortening ratio less than the first shortening ratio. Such multi-section stents may comprise modular components of a modular stent, such as a bifurcated modular stent, adapted for joining together in situ. The multi-section stent may comprise a first section having a first percentage of open area and a second section having a second percentage of open area. The stent may also comprise a first section having a first stent architecture with an end effect wherein the radial strength at the end is less than elsewhere in the stent, and a second section having a second stent architecture to counteract the end effect. Methods for treating body lumen by implanting the stents as described herein are also disclosed, as is a method for counteracting a stent architecture end effect.
Owner:LIFESHIELD SCI

Axial Pullwire Tension Mechanism for Self-Expanding Stent

An axial pull wire tension mechanism for a self expanding stent includes a delivery system composed of an inner tube (2), a middle tube (5) and a lock wire (3), open wire knees (102) and/or close wire eyelets (103) at the both ends of the stent, and pull wires (4) for tensioning the stent. The pull wires (4) include at least one distal pull wire (42) and at least one proximal pull wire (43). A pull wire ring (421, 431) is provided at the distal end of each of the pull wires. Each pull wire passes through an opening of the inner tubing head (7) or the inner tube (2) or the middle tube (S) after the pull wire ring at its distal end is threaded through and locked temporarily by the lock wire, and travels between the open wire knees (102) or the close wire eyelets (103) at one end of the stent to constitute a temporary stent connection, thus forming the pull wire tension mechanism that can axially tension the stent. The present invention can locate the self-expanding stent in terms of its axial and rotational positions with great precision when in collaboration with the delivery system and the radially compression mechanism during the process of delivering the self-expanding stent into the patient's body, and is capable of either further adjustment should the position prove to be less ideal, or recycling should the stent prove to be incongruous after the expansion of the stent.
Owner:WENG NING

Stent crimping method

An apparatus for crimping a stent by segmental radial compression, comprising a stationary base member; a rotatable drive hub which is moveable in relation to the stationary base member; and a crimping head aligned with respect to the stationary base member and to the rotatable drive hub. The crimping head includes at least ten segments. The segments each have a proximal end and an angled distal end with at least one angled side face terminating in an edge of a predetermined length, each segment having a centerline between the proximal and distal ends, each segment having a proximal point and a distal point, the distal point being disposed on the centerline and the proximal point being disposed off the centerline, and the proximal point being pivotally coupled by pins to the stationary base member and the distal point being pivotally coupled by pins to the rotatable hub member. The segments are arranged so that the segment distal ends are disposed adjacent to and a predetermined distance away from a central point and defining a central aperture with a cylindrical dimension. Also, the segment centerlines extend therefrom toward the segment distal ends and are oriented away from the central point. The segment distal ends move closer to the central point upon rotation of the rotatable hub member in a predetermined direction, whereby the stent is disposed around a base substrate, aligned in the central aperture and crimped round the base substrate upon rotation of the rotatable hub. A method of crimping a stent is also disclosed.
Owner:MACHINE SOLUTIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products