Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1191results about "Wire articles" patented technology

Biocompatible crosslinked coating and crosslinkable coating polymer composition for forming such a coating

InactiveUSRE40816E1Assist in visualisationStentsWire articlesPhosphoryl cholineBraided stent
A braided stent (1) for transluminal implantation in body lumens is self-expanding and has a radial expanded configuration in which the angle α between filaments is acute. Some or all of filaments (6,7) are welded together in pairs at each end (4,5) of the stent to provide beads (8), thereby strengthening the stent and assisting its deployment from a delivery device. The stent is preferably completely coated using a biocompatible polymeric coating, said polymer preferably having pendant phosphoryl choline groups. A method of making the stent by braiding and welding is described as well as a delivery device for deploying the device.The present invention provides a biocompatible crosslinked coating and a crosslinkable coating polymer composition for forming such a coating. The biocompatible crosslinked coating may be formed by curing a polymer of 23 mole % (methacryloyloxy ethyl)-2-(trimethylammonium ethyl) phosphate inner salt, 47 mole % lauryl methacrylate, 5 mole % γtrimethoxysilyl propyl methacrylate and 25 mole % of hydroxy propyl methacrylate. The crosslinkable coating polymer may include 23 mole % (methacryloyloxy ethyl)-2-(trimethylammonium ethyl) phosphate inner salt, 47 mole % lauryl methacrylate, 5 mole % γtrimethoxysilyl propyl methacrylate and 25 mole % of hydroxy propyl methacrylate.<?insert-end id="INS-S-00001" ?>
Owner:BIOCOMPATIBLES UK LTD

Robot and method for bending orthodontic archwires and other medical devices

A robotic bending apparatus for bending archwires and other types of elongate, bendable medical devices into a desired configuration includes a first gripping tool and a moveable gripping tool. The first gripping tool can be either fixed with respect to a base or table for the robot or positioned at the end of robot am. The moveable gripping tool is mounted to the end of a moveable robot arm having a proximal portion also mounted to the base. The robot preferably comprises a six axis bending robot, in which the distal end of the moveable arm can move relative to the fixed gripping tool about three translational axes and three rotational axes. The gripping tools preferably incorporate force sensors which are used to determine overbends needed to get the desired final shape of the archwire. The robot may also include a resistive heating system in which current flows through the wire while the wire is held in a bent condition to heat the wire and thereby retain the bent shape of the wire. A magazine for holding a plurality of straight archwires needing to be bent and a conveyor system for receiving the wires after the bending process is complete are also described. The robot bending system is able to form archwires with any required second and third order bends quickly and with high precision. As such, it is highly suitable for use in a precision appliance-manufacturing center manufacturing a large number of archwires (or other medical devices or appliances) for a distributed base of clinics.
Owner:ORAMETRIX

Stent crimping method

An apparatus for crimping a stent by segmental radial compression, comprising a stationary base member; a rotatable drive hub which is moveable in relation to the stationary base member; and a crimping head aligned with respect to the stationary base member and to the rotatable drive hub. The crimping head includes at least ten segments. The segments each have a proximal end and an angled distal end with at least one angled side face terminating in an edge of a predetermined length, each segment having a centerline between the proximal and distal ends, each segment having a proximal point and a distal point, the distal point being disposed on the centerline and the proximal point being disposed off the centerline, and the proximal point being pivotally coupled by pins to the stationary base member and the distal point being pivotally coupled by pins to the rotatable hub member. The segments are arranged so that the segment distal ends are disposed adjacent to and a predetermined distance away from a central point and defining a central aperture with a cylindrical dimension. Also, the segment centerlines extend therefrom toward the segment distal ends and are oriented away from the central point. The segment distal ends move closer to the central point upon rotation of the rotatable hub member in a predetermined direction, whereby the stent is disposed around a base substrate, aligned in the central aperture and crimped round the base substrate upon rotation of the rotatable hub. A method of crimping a stent is also disclosed.
Owner:MACHINE SOLUTIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products