Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

35456 results about "Rotational axis" patented technology

Manipulator

A manipulator includes a working unit comprising an operation command unit, horizontal roller and vertical rollers mounted thereon, drive pulleys rotatable in response to operation of the horizontal roller and the vertical roller, a connector, a first rotational axis disposed on a distal end of the connector, a second rotational axis extending perpendicularly to the first rotational axis, tubular members rotatably supported on a shaft providing the first rotational axis, and wires having rear and front portions trained around the drive pulleys and the tubular members, respectively. A drive mechanism operates about the first rotational axis in response to rotation of the tubular member, and an end effector operates about the second rotational axis in response to rotation of the tubular member.
Owner:TERUMO KK +1

Self-Centering Wafer Carrier System For Chemical Vapor Deposition

A self-centering wafer carrier system for a chemical vapor deposition (CVD) reactor includes a wafer carrier comprising an edge. The wafer carrier at least partially supports a wafer for CVD processing. A rotating tube comprises an edge that supports the wafer carrier during processing. An edge geometry of the wafer carrier and an edge geometry of the rotating tube being chosen to provide a coincident alignment of a central axis of the wafer carrier and a rotation axis of the rotating tube during process at a desired process temperature.
Owner:VEECO INSTR

Intervertebral implant with joint parts mounted on roller bodies

InactiveUS7473276B2Relieves strain on the face jointsJoint implantsSpinal implantsRotational axisEngineering
An intervertebral implant (1), including an upper section (10) provided with a ventral side area (11), a dorsal side area (12), two lateral side areas (13,14), a top apposition surface (15) and a bottom surface (16), a lower section (20) provided with a ventral side area (21), a dorsal side area (22), two lateral side areas (23,24), a bottom apposition surface (25) and a top surface (26), wherein the two sections (10,20) are moveable in relation to each other by means of two joints (38;39) arranged between the two sections (10;20), and wherein each of the joints (38;39) has a swivel axle (3;4) and the two swivel axles (3;4) are arranged perpendicular to each other, each of the joints (38;39) comprises at least one axle (34;36) coaxial to the relevant swivel axle (3;4) and a bearing shell (35;37) receiving the axle (34;36), and roll bodies (70) are inserted between the axles (34;36) and the bearing shells (35;37).
Owner:SYNTHES USA

Apparatus for guiding a medical tool

There is provided a guide apparatus for orienting a medical tool relative to and through a remote fulcrum or remote center of motion. The guide apparatus may comprise: at least one crank arm comprising at least a portion of a first hinged coupling for hinged coupling to a stabilizer; at least one link arm comprising at least a portion of a second hinged coupling for hinged coupling to the crank arm at a location spaced from the first hinged coupling; a tool holder for supporting a medical tool on the link arm at a location spaced from the first hinged coupling; wherein the rotational axes of the first and second hinged couplings intersect to define a remote fulcrum. The guide apparatus may be configured to be an open-loop spherical chain or a closed-loop spherical chain.
Owner:UNIV OF WESTERN ONTARIO

Device for rotatably positioning a camera or similar article about two orthogonal axes

A positioning device is provided for rotatably positioning a camera or other article about orthogonal rotational axes. The positioning device includes a carriage supported for rotation about a horizontal axis by a yoke. The yoke is in turn rotatably coupled to a base assembly for rotation of the yoke about a vertical axis. Rotation of the camera about the horizontal and vertical axes is respectively effected by first and second voice coil actuators, each comprising a pair of magnets and at least one coil to which current is supplied. The amplitude and direction of the current supplied to the coil determines the speed and direction of rotation of the camera. The second voice coil actuator preferably includes a coil assembly comprising two opposed coils. This design overcomes the angular range limitations associated with prior art voice coil actuators and enables rotation of the camera about an extended angular range. The device can be advantageously utilized for adjustment of the pan and tilt angles of a video camera in a conferencing system.
Owner:POLYCOM INC

Intelligent robot welding device using large-scale workpiece

The invention discloses a large-sized workpiece welded intelligent robot device, relates to robot technology, in particular to the robot device based on visual control technology. The device consists of a robot body, a sensing system, a robot controller and a welding auxiliary mechanism. The welded robot is provided with nine moving shafts, including three macrographic moving translational moving shafts, three microscopic moving translational moving shafts and three rotating shafts. The robot body comprises a robot frame and a robot head which is arranged on a transverse arm of the robot frame, and the robot frame consists of the three macrographic moving translational moving shafts, namely a horizontal lead rail, an upright post and the transverse arm. The robot head consists of the three microscopic moving translational moving shafts, the three rotating shafts and a welding gun. The robot frame provides the large-scale three-dimensional movement of the robot; the precision of macrographic moving movement is compensated by the microscopic moving mechanisms of the robot head which also provides rotating freedom of motion. The robot device can meet the movement requirements of large scale and precise positioning for the welding operation of large-sized workpieces. Through the visual sensing technology and intelligent visual controlling technology, the device can improve the automatic welding quality and efficiency of the welded robot.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Shaft seal and turbine using the same

InactiveUS6343792B1High sealing capabilityReduce leakageEngine sealsPiston ringsGas turbinesEngineering
A shaft seal having a high abrasion resistance is disclosed, by which the leakage of the gas from the high-pressure side to the low-pressure side can be reduced. In the shaft seal, flexible leaves are multi-layered to form a ring shape. The shaft seal is mainly arranged around the rotation shaft of a gas turbine or the like. The relevant turbine comprises a casing, a compressor, a rotation shaft, moving blades attached to the rotation shaft, and stationary blades attached to the casing in a manner such that the stationary blades face the moving blades, wherein the shaft seals are provided between a plurality of stationary blades and the rotation shaft wherein the leaves of each shaft seal contact the rotation shaft. Under the rated operating conditions, the top ends of the leaves slightly separate from the surface of the rotation shaft due to the dynamic pressure generated by the rotation of the rotation shaft. When the turbine is not operated, the top ends of the leaves contact the rotation shaft again due to the elastic restoring force of the leaves.
Owner:MITSUBISHI HEAVY IND LTD

Continuously variable transmission and method of controlling it

To provide a continuously variable transmission and a control method thereof, allowing for control of the axial position of a movable sheave without a sensor for measuring the axial position of the movable sheave on a rotational shaft and for stable control with the movable sheave being held in position, without the increase in the size of mechanisms and power consumption. A continuously variable transmission in which, on a rotational shaft 1 thereof are mounted a fixed sheave 2 positioned in the axial direction and a movable sheave 3 slidable axially, so as to face each other, a motor is provided for driving the movable sheave, and a slide driving means 16 is provided for sliding the movable sheave 3 axially by the rotation of the motor, characterized in that: the motor is a step motor 6, and the step motor 6 and the slide drive means 16 are mounted coaxially with the rotational shaft 1.
Owner:YAMAHA MOTOR CO LTD

Three-Dimensional Printing System Using Dual Rotation Axes

A 3-D printer system moves a printed tool over a print surface with a mechanism controlling a rotational angle of an arm holding the print tool and a revolutionary angle of axis of rotation of the printable area to eliminate the disadvantages of conventionally used linear motion mechanisms
Owner:WISCONSIN ALUMNI RES FOUND

Electronic device including flexible display

According to an embodiment of the present disclosure, an electronic device may comprise a first housing including a first surface and a second surface facing in a direction opposite the first surface, a second housing including a third surface and a fourth surface facing in a direction opposite the third surface, a hinge disposed between the first housing and the second housing configured to provide rotational motion between the first housing and the second housing, and a flexible display disposed from the first surface of the first housing across the hinge to the third surface of the second housing, at least part of the flexible display configured to form a curved surface as the hinge structure is folded, wherein the hinge may include dual-axis hinges configured to provide a first rotational axis allowing the first housing to rotate about the second housing and a second rotational axis allowing the second housing to rotate about the first housing and slides coupled with the first housing and the second housing and configured to provide sliding motion perpendicular to a lengthwise direction of the first housing and the second housing.
Owner:SAMSUNG ELECTRONICS CO LTD

Eccentric abrading head for high-speed rotational atherectomy devices

The invention provides a rotational atherectomy device having, in various embodiments, a flexible, elongated, rotatable drive shaft with at least one flexible eccentric enlarged abrading head attached thereto. In other embodiments, the eccentric abrading head is not flexible or partially flexible. At least part of the eccentric enlarged cutting head has a tissue removing surface—typically an abrasive surface. In certain embodiments, the abrading head will be at least partially hollow. When placed within an artery against stenotic tissue and rotated at sufficiently high speeds the eccentric nature of the enlarged cutting head causes the cutting head and drive shaft to rotate in such a fashion as to open the stenotic lesion to a diameter substantially larger than the outer diameter of the enlarged cutting head. Preferably the eccentric enlarged cutting head has a center of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the device to open the stenotic lesion to a diameter substantially larger than the outer diameter of the enlarged cutting head when operated at high speeds.
Owner:CARDIOVASCULAR SYST INC

Friction transmission with axial loading and a radiolucent surgical needle driver

A method for performing radiological-image-guided percutaneous surgery with a system which includes a radiological image generating device for generating an image of a target anatomy of a patient, and a needle insertion mechanism disposed adjacent the image generating device and having a needle adapted to be inserted into the patient. The method includes the steps of: determining a needle trajectory of the needle by positioning the image generating device for aligning, in the image generated by the image generating device, a desired skin insertion site of the patient with a target region of the target anatomy; locking the needle in a direction of the needle trajectory; and repositioning the image generating device to obtain a lateral view of the needle trajectory for viewing an insertion depth and path of the needle during its insertion into the patient. Moreover, a motion transmission mechanism includes an output shaft and an output shaft driver which has two rotational components having respective contact faces between which the output shaft is pressed for frictional engagement therewith. The frictional engagement creates a force between the output shaft and the rotational components which is parallel to the rotational axis of the rotational components for allowing the rotational components to impart a translational motion to the output shaft by virtue of their rotational motion.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products