Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6822 results about "Angular velocity" patented technology

In physics, angular velocity refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time. There are two types of angular velocity: orbital angular velocity and spin angular velocity. Spin angular velocity refers to how fast a rigid body rotates with respect to its centre of rotation. Orbital angular velocity refers to how fast a point object revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the origin.

Portable system for analyzing human gait

The invention is a portable gait analyzer comprising of at least one independent rear foot motion collection unit, at least one independent lower shank motion collection unit, plantar pressure collection unit, at least one processing and display unit, and a soft casing unit. A plurality of accelerometers, rate sensors, force sensor resistors, and pressure sensors provide for the acquisition of acceleration signals, angular velocity signals, foot force signals, and foot pressure signals to be processed. At least one central processing unit, a plurality of memory components, input / output components and ports, telemetry components, calibration components, liquid crystal displays components for the processing and outputting of three dimensional acceleration, angular velocity, tilt, and position. The rearfoot motion collection unit and lower shank motion collection unit interact with the processing and display unit to calculate rear foot kinematic data crucial to identify the motions of pronation and supination. The plantar pressure collection unit interacts with the processing and display unit to calculate plantar pressure data crucial to identify the center of pressure line and excessive and abnormal loads on the sole of the foot. These factors of rear-foot kinematics and plantar pressure lead to gait style identification.
Owner:ADVANCED MOTION TECH INC

Method for recognizing a change in lane of a vehicle

A method of detecting a lane change of a subject vehicle (20), having a locating device (10) which uses angular resolution for locating vehicles (VEH1, VEH2, VEH3) traveling in front, and a device (44) for determining the yaw rate (ω0) of the subject vehicle. The angular velocity (ωi) of at least one vehicle traveling in front relative to the subject vehicle (20) is measured using the locating device (10), and a lane change signal (LC) indicating the lane change is formed by comparing the measured angular velocity (ωi) to the yaw rate (ω0) of the subject vehicle.
Owner:ROBERT BOSCH GMBH

Motion tracking and analysis apparatus and method and system implementations thereof

An orientation and position tracking system and method in three-dimensional space and over a period of time utilizing multiple inertial and other sensors for determining motion parameters to measure orientation and position of a moveable object. The sensors, for example vibrational and angular velocity sensors, generate signals characterizing the motion of the moveable object. The information is received by a data acquisition system and processed by a microcontroller. The data is then transmitted to an external data reception system (locally based or a global network), preferably via wireless communication. The information can then be displayed and presented to the user through a variety of means including audio, visual, and tactile. According to various embodiments, the present invention provides for a motion tracking apparatus and method for implementation in motion systems including systems to teach motion to a group and for body motion capture and analysis systems.
Owner:FORTESCUE CORP

Head-mounted display apparatus

A head-mounted display apparatus comprises a see-through image display portion for setting a display frame in a display-capable range, and displaying an image in such a manner that the image is superimposed on an image of the external environment in the display frame, an angular velocity sensor for detecting the tilting angle of the head of an observer; an LCD driver, a second CPU and the like which control the display frame to move in an amount corresponding to the angle detected by the angle detection means in the direction opposite to the tilting direction of the observer's head, whereby the position of a virtual image, observed by the observer, is kept substantially constant, irrespective of the tilting of the observer's head, and first CPU which controls the apparatus so that the mode of the apparatus is automatically changed to a low consumption power mode.
Owner:OLYMPUS CORP

Method and apparatus for determining orientation and position of a moveable object

An orientation and position tracking system in three-dimensional space and over a period of time utilizing multiple inertial and other sensors for determining motion parameters to measure orientation and position of a moveable object. The sensors, for example vibrational and angular velocity sensors, generate signals characterizing the motion of the moveable object. The information is received by a data acquisition system and processed by a microcontroller. The data is then transmitted via wireless communication to an external data reception system (locally based or a global network). The information can then be displayed and presented to the user through a variety of means including audio, visual, and tactile.
Owner:FORTESCUE CORP

Scanning mechanisms for imaging probe

The present invention provides scanning mechanisms for imaging probes using for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and / or optical coherence tomography. The imaging probes include adjustable rotational drive mechanism for imparting rotational motion to an imaging assembly containing either optical or ultrasound transducers which emit energy into the surrounding area. The imaging assembly includes a scanning mechanism having including a movable member configured to deliver the energy beam along a path out of said elongate hollow shaft at a variable angle with respect to said longitudinal axis to give forward and side viewing capability of the imaging assembly. The movable member is mounted in such a way that the variable angle is a function of the angular velocity of the imaging assembly.
Owner:SUNNYBROOK HEALTH SCI CENT +1

Shaft mounted energy harvesting for wireless sensor operation and data transmission

A device for monitoring a rotating shaft is provided. The device measures strain in the shaft and provides angular velocity and torque in the shaft. The device includes a sensor, sensor conditioning circuitry, a microprocessor, and a transmitter, all located on a rotating shaft. The device obtains power by harvesting mechanical energy of the rotating shaft itself. Coils are provided rotating with the shaft and permanent magnets are mounted adjacent the rotating shaft so electrical energy is induced in the coils as they rotate through the magnetic field of the permanent magnets. A battery or capacitor is connected to the coils for storing energy. A microprocessor is connected to the sensors, the storage device, and the transmitter for managing power consumption and for monitoring the amount of electrical energy stored in the storage device and for switchably connecting the storage device to the transmitter when the stored energy exceeds a threshold.
Owner:LORD CORP

Capturing Two or More Images to Form a Panoramic Image

A camera includes a display device, an angular velocity sensor to sense yaw rotation, an acceleration sensor to sense lateral and fore / aft acceleration, a memory to store first and second locations, and a processor. The angular velocity sensor is at the first location and the acceleration sensor is at the second location, and both locations are away from a center of perspective. The processor determines an initial position when an initial image is captured, a target position for capturing a next image, and a current position. The current position is determined from rotation sensed by the angular velocity sensor, acceleration sensed by the acceleration sensor, and the first and second locations. The processor causes a visual indication of the target position and a visual indication of the current position to be rendered on the display device. When the target and current positions are in substantial alignment, the camera automatically captures the next image.
Owner:SEIKO EPSON CORP

Head-mounted display apparatus

A head-mounted display apparatus comprises a see-through image display portion for setting a display frame in a display-capable range, and displaying an image in such a manner that the image is superimposed on an image of the external environment in the display frame, an angular velocity sensor for detecting the tilting angle of the head of an observer; an LCD driver, a second CPU and the like which control the display frame to move in an amount corresponding to the angle detected by the angle detection means in the direction opposite to the tilting direction of the observer's head, whereby the position of a virtual image, observed by the observer, is kept substantially constant, irrespective of the tilting of the observer's head, and first CPU which controls the apparatus so that the mode of the apparatus is automatically changed to a low consumption power mode.
Owner:OLYMPUS CORP

3D input apparatus and method thereof

Provided are a 3D input apparatus and method for precisely detecting a position of the 3D input apparatus. The 3D input apparatus includes a sensor package which measures a first velocity an acceleration, and an angular velocity of the 3D input apparatus in a relative body coordinate system; a posture information generating unit, which generates posture information of the 3D input apparatus using the measured acceleration and angular velocity; a velocity transformation unit, which transforms the measured first velocity into a second velocity in an absolute coordinate system using the posture information; and a position restoration unit, which determines a position of the 3D input apparatus by integrating the second velocity.
Owner:SAMSUNG ELECTRONICS CO LTD

Transmission for pump such as hydraulic fracturing pump

An apparatus and method according to which a fluid, such as a fracturing fluid, is pressurized. The apparatus includes a motor that produces a first rotational output including a first angular velocity, a pump operably coupled to the motor, the pump comprising a fluid end and a power end operably coupled to the fluid end, and a transmission operably coupled between the motor and the pump. The transmission receives the first rotational output as a first rotational input, the first rotational input including the first angular velocity, and converts the first rotational input into a second rotational output, the second rotational output including a second angular velocity. The power end receives the second rotational output as a second rotational input, the second rotational input including the second angular velocity. In some embodiments, the transmission is directly connected to, or part of, the pump and the motor.
Owner:S P M FLOW CONTROL

Method and apparatus for controlling brushless DC motors in implantable medical devices

Methods and apparatus for controlling a polyphase motor in implantable medical device applications are provided. In one embodiment, the polyphase motor is a brushless DC motor. The back emf of a selected phase of the motor is sampled while a drive voltage of the selected phase is substantially zero. Various embodiments utilize sinusoidal or trapezoidal drive voltages. The sampled back emf provides an error signal indicative of the positional error of the rotor. In one embodiment, the sampled back emf is normalized with respect to a commanded angular velocity of the rotor to provide an error signal proportional only to the positional error of the motor rotor. The error signal is provided as feedback to control a frequency of the drive voltage. A speed control generates a speed control signal corresponding to a difference between a commanded angular velocity and an angular velocity inferred from the frequency of the drive voltage. The speed control signal is provided as feedback to control an amplitude of the drive voltage. In one embodiment, an apparatus includes a brushless DC motor and a commutation control. The commutation control provides a commutation control signal for a selected phase of the motor in accordance with a sampled back electromotive force (emf) of that phase. The back emf of the phase is sampled only while the corresponding drive voltage for the selected phase is substantially zero, wherein a frequency of a drive voltage of the motor is varied in accordance with the commutation control signal.
Owner:HEARTWARE INC

Mobile robot platform and method for sensing movement of the same

A mobile robot platform and a method for sensing movement of the same are disclosed, which utilize two omni-directional meter wheels perpendicular to each other and a magnetic sensing module for detecting a moving condition of the platform moving on a planar surface while transmitting the detected moving condition to a signal processing unit to calculate the position, velocity, angular position and angular velocity of the platform.
Owner:IND TECH RES INST

Gyro-stabilized air vehicle

A vertical takeoff and landing (VTOL) air vehicle disclosed. The air vehicle can be manned or unmanned. In one embodiment, the air vehicle includes two shrouded propellers, a fuselage and a gyroscopic stabilization disk installed in the fuselage. The gyroscopic stabilization disk can be configured to provide sufficient angular momentum, by sufficient mass and / or sufficient angular velocity, such that the air vehicle is gyroscopically stabilized during various phases of flight. In one embodiment the fuselage is fixedly attached to the shrouded propellers. In another embodiment, the shrouded propellers are pivotably mounted to the fuselage.
Owner:BOSTAN NICOLAE

Apparatus for correction based upon detecting a camera shaking

An apparatus for detecting a deviation of a camera as a result of the camera shaking, for example resulting from a hand of the camera operator shaking. The apparatus includes a shaking detector which detects a deviation of the camera from shaking based upon an output of angular velocity sensors which are located on different axes of the camera coordinates. A calculator calculates tilt angles of each of the coordinate axes from outputs of the angular velocity sensors. The rotation regulator rotates an image pickup device around an optical axis of the camera or an axis in parallel with the optical axis.
Owner:RICOH KK

Extension -mode angular velocity sensor

An angular velocity sensor including a drive extension mode. In one aspect, an angular rate sensor includes a base and at least three masses disposed substantially in a plane parallel to the base, the masses having a center of mass. At least one actuator drives the masses in an extension mode, such that in the extension mode the masses move in the plane simultaneously away or simultaneously towards the center of mass. At least one transducer senses at least one Coriolis force resulting from motion of the masses and angular velocity about at least one input axis of the sensor. Additional embodiments can include a linkage that constrains the masses to move in the extension mode.
Owner:INVENSENSE

Image capturing apparatus

An image capturing apparatus includes an image capturing device for generating image data, a line-of-sight-direction / angular velocity detecting portion for detecting biological information, such as the direction of a line of sight of a photographer or the angular velocity of the head of the photographer, when the photographer observes a subject, and a controller / recorder. Among those elements, the image capturing device and the line-of-sight-direction / angular-velocity detecting portion are worn on the head of the photographer. The controller / recorder records, in a recording memory, the image data and the biological information in association with each other together with time information concerning a time at which the image data is obtained and a time at which the biological information is obtained. Then, based on the recorded biological information, the recorded image data is edited.
Owner:OM DIGITAL SOLUTIONS CORP

Electronic device, signal compensation device and signal compensation method

An electronic device that prevents a failure caused by a temperature drift of an angular velocity sensor, and a signal compensation system and a signal compensation method for compensating for the temperature drift are provided. The present invention provides a mechanism including an angular velocity sensor that outputs a first signal in accordance with a rotational angular velocity. The device stores in advance data of a second signal normally output by the angular velocity sensor while in a stationary state, detects a stationary state and extracts the difference between the first and second signals when the stationary state is detected. The device thereby compensates for the first signal based on the extracted difference signal. A display unit in the device scrolls an image based on the compensated signal. This prevents a failure caused by the temperature drift of the angular velocity sensor.
Owner:SONY CORP

System for sensing yaw rate using a magnetic field sensor and portable electronic devices using the same

An attitude- and motion-sensing system for an electronic device, such as a cellular telephone, a game device, and the like, is disclosed. The system, which can be integrated into the portable electronic device, includes a two- or three-axis accelerometer and a three-axis magnetic compass. Data about the attitude of the electronic device from the accelerometer and magnetic compass are first processed by a signal processing unit that calculates attitude angles (pitch, roll, and yaw) and rotational angular velocities. These data are then translated into input signals for a specific application program associated with the electronic device.
Owner:MEMSIC

Method and apparatus for high resolution 3D imaging

A system and method for imaging a three-dimensional scene having one or more objects. The system includes a light source, a detector array, a timing circuit, an inertial guidance system and a processor connected to the timing circuit and the inertial guidance system. The light source generates an optical pulse and projects the optical pulse on an object so that it is reflected as a reflected pulse. The detector array includes a plurality of detectors, wherein the detectors are oriented to receive the reflected pulse. The timing circuit determines when the reflected pulse reached detectors on the detector array. The inertial guidance system measures angular velocity and acceleration. The processor forms a composite image of the three-dimensional scene as a function of camera position and range to objects in the three-dimensional scene.
Owner:TOPCON POSITIONING SYST INC

Swing analyzing apparatus

A swing analyzing apparatus includes at least an angular velocity sensor, an impact detection section, an angular velocity information calculation section, and an impact state judgment section. The impact detection section detects the timing of impact in a swing of a sporting good. The angular velocity information calculation section calculates at least one of the amount of change in angular velocity with respect to a predetermined axis in a predetermined period after the impact timing and the greatest value of the angular velocity based on data outputted form the angular velocity sensor. The impact state judgment section judges the state of impact based on the result calculated by the angular velocity information calculation section.
Owner:SEIKO EPSON CORP

Method for recognising a change in lane of a vehicle

A method of detecting a lane change of a subject vehicle (20), having a locating device (10) which uses angular resolution for locating vehicles (VEH1, VEH2, VEH3) traveling in front, and a device (44) for determining the yaw rate (omega0) of the subject vehicle. The angular velocity (omegai) of at least one vehicle traveling in front relative to the subject vehicle (20) is measured using the locating device (10), and a lane change signal (LC) indicating the lane change is formed by comparing the measured angular velocity (omegai) to the yaw rate (omega0) of the subject vehicle.
Owner:ROBERT BOSCH GMBH

High-efficiency vehicular transmission

InactiveUS7942781B2Spread the wordSoften one-way clutch engagementsToothed gearingsElectric machinesCouplingAngular velocity
A high-efficiency vehicular transmission is provided. The transmission includes a transmission housing, a set of torque delivery elements which include first and second elements supported for rotation within the housing and an electric motor for changing angular velocity of at least one of the elements in response to an electrical signal during a shift to obtain a desired transmission ratio. At least one non-friction controllable coupling assembly has a coupling state for coupling the first element to either the second element or the housing and an uncoupling state for uncoupling the first element from either the second element or the housing, respectively. The at least one coupling assembly is non-hydraulically controlled to change state to maintain the desired transmission ratio.
Owner:MEANS IND INC

Device for use in playing card handling system

A playing card handling system includes a pivoting pair of jaws to retrieve playing cards from a playing card receiver, for example a carousel. The rotational or angular velocity of a picker may be approximately equal to a rotational or angular velocity of a pickup roller, as the picker approaches the pickup roller.
Owner:BALLY GAMING INC

Robot controller and robot controlling method

A robot controller according to an embodiment of the present invention comprises a base; a first link; a first actuator which drives to rotate the first link relative to the base; a first torque transmission mechanism which transmits the torque of the first actuator to the first link at a speed reducing ratio of N1; a first angular sensor which detects a rotating angle θM1 of the first actuator; a first angular velocity sensor which detects an angular velocity ωA1 of the first link rotating relatively to the base; and a processor which calculates an angle of the first link relatively to the base by using a high frequency content of an integrated value of ωA1 and a low frequency content of θM1*N1, the high frequency content being equal to a first frequency or higher and the low frequency content being equal to a first frequency or lower.
Owner:KK TOSHIBA

Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator

A robotic control system is placed in clutch mode so that a slave manipulator holding a surgical instrument is temporarily disengaged from control by a master manipulator in order to allow manual positioning of the surgical instrument at a surgical site within a patient. Control systems implemented in a processor compensate for internally generated frictional and inertial resistance experienced during the positioning, thereby making movement more comfortable to the mover, and stabler from a control standpoint. Each control system drives a joint motor in the slave manipulator with a saturated torque command signal which has been generated to compensate for non-linear viscous forces, coulomb friction, cogging effects, and inertia forces subjected to the joint, using estimated joint angular velocities, accelerations and externally applied torques generated by an observer in the control system from sampled displacement measurements received from a sensor associated with the joint.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Integrated multiaxis motion sensor

A system and method describes an inertial sensor assembly, the assembly comprises a substrate parallel to the plane, at least one in-plane angular velocity sensor comprising a pair proof masses that are oscillated in anti-phase fashion along an axis normal to the plane. The first in-plane angular velocity sensor further includes a sensing frame responsive to the angular velocity of the substrate around the first axis parallel to the plane and perpendicular to the axis normal to the plane. The assembly also includes at least one out-of-plane angular velocity sensor comprising a pair of proof masses that are oscillated in anti-phase fashion in the plane parallel to the plane. The out-of-plane angular velocity sensor further comprises a sensing frame responsive to the angular velocity of the substrate around the axis normal to the plane.
Owner:INVENSENSE

Integrated microelectromechanical systems (MEMS) vibrating mass z-axis rate sensor

A sensor that measures angular velocity about an axis that is normal to a sensing plane of the sensor. The sensor comprises a sensing subassembly that includes a planar frame parallel to the sensing plane, a first proof mass disposed in the sensing plane, a second proof mass disposed in the sensing plane laterally to the first proof mass, and a linkage within the frame and connected to the frame. The linkage is connected to the first proof mass and to the second proof mass. The sensor further includes actuator for driving the first proof mass and the second proof mass into oscillation along a drive axis in the sensing plane. The sensor further includes a first transducer to sense motion of the frame in response to a Coriolis force acting on the oscillating first proof mass and the oscillating second proof mass.
Owner:INVENSENSE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products